局部连接与权值共享

下图是一个很经典的图示,左边是全连接,右边是局部连接。

对于一个1000 × 1000的输入图像而言,如果下一个隐藏层的神经元数目为10^6个,采用全连接则有1000 × 1000 × 10^6 = 10^12个权值参数,如此数目巨大的参数几乎难以训练;而采用局部连接,隐藏层的每个神经元仅与图像中10 × 10的局部图像相连接,那么此时的权值参数数量为10 × 10 × 10^6 = 10^8,将直接减少4个数量级。

尽管减少了几个数量级,但参数数量依然较多。能不能再进一步减少呢?能!方法就是权值共享。具体做法是,在局部连接中隐藏层的每一个神经元连接的是一个10 × 10的局部图像,因此有10 × 10个权值参数,将这10 × 10个权值参数共享给剩下的神经元,也就是说隐藏层中10^6个神经元的权值参数相同,那么此时不管隐藏层神经元的数目是多少,需要训练的参数就是这 10 × 10个权值参数(也就是卷积核(也称滤波器)的大小),如下图。

这大概就是CNN的一个神奇之处,尽管只有这么少的参数,依旧有出色的性能。但是,这样仅提取了图像的一种特征,如果要多提取出一些特征,可以增加多个卷积核,不同的卷积核能够得到图像的不同映射下的特征,称之为Feature Map。如果有100个卷积核,最终的权值参数也仅为100 × 100 = 10^4个而已。另外,偏置参数也是共享的,同一种滤波器共享一个。

卷积神经网络的核心思想是:局部感受野(local field),权值共享以及时间或空间亚采样这三种思想结合起来,获得了某种程度的位移、尺度、形变不变性(?不够理解透彻?)。

网络结构

下图是一个经典的CNN结构,称为LeNet-5网络

可以看出,CNN中主要有两种类型的网络层,分别是卷积层池化/采样层(Pooling)。卷积层的作用是提取图像的各种特征;池化层的作用是对原始特征信号进行抽象,从而大幅度减少训练参数,另外还可以减轻模型过拟合的程度。

卷积层

卷积层是卷积核在上一级输入层上通过逐一滑动窗口计算而得,卷积核中的每一个参数都相当于传统神经网络中的权值参数,与对应的局部像素相连接,将卷积核的各个参数与对应的局部像素值相乘之和,(通常还要再加上一个偏置参数),得到卷积层上的结果。如下图所示。

下面的动图能够更好地解释卷积过程:

摘自:http://www.jeyzhang.com/cnn-learning-notes-1.html

CNN中的局部连接(Sparse Connectivity)和权值共享的更多相关文章

  1. 从多维卷积说起,比较CNN中的全连接和全卷积

    一幅图像里包含三个通道,分别是RGB通道.三通道在卷积时是通过累加三个卷积结果得到的. CNN中全连接层的卷积核大小是feature map的大小.比如feature是3*3的,那么该全连接层的卷积核 ...

  2. CNN中减少网络的参数的三个思想

    CNN中减少网络的参数的三个思想: 1) 局部连接(Local Connectivity) 2) 权值共享(Shared Weights) 3) 池化(Pooling) 局部连接 局部连接是相对于全连 ...

  3. CNN中卷积的意义

    在传统的神经网络中,比如多层感知机(MLP),其输入通常是一个特征向量.需要人工设计特征,然后将用这些特征计算的值组成特征向量.在过去几十年的经验来看,人工找的特征并不总是好用.有时多了,有时少了,有 ...

  4. 两篇论文之CNN中正交操作

    CNN的权值正交性和特征正交性,在一定程度上是和特征表达的差异性存在一定联系的. 下面两篇论文,一篇是在训练中对权值添加正交正则提高训练稳定性,一篇是对特征添加正交性的损失抑制过拟合. 第一篇:Ort ...

  5. caffe中权值初始化方法

    首先说明:在caffe/include/caffe中的 filer.hpp文件中有它的源文件,如果想看,可以看看哦,反正我是不想看,代码细节吧,现在不想知道太多,有个宏观的idea就可以啦,如果想看代 ...

  6. 在AlexNet中LRN 局部响应归一化的理

    在AlexNet中LRN 局部响应归一化的理 一.LRN技术介绍: Local Response Normalization(LRN)技术主要是深度学习训练时的一种提高准确度的技术方法.其中caffe ...

  7. CNN中,1X1卷积核到底有什么作用呢?

    CNN中,1X1卷积核到底有什么作用呢? https://www.jianshu.com/p/ba51f8c6e348 Question: 从NIN 到Googlenet mrsa net 都是用了这 ...

  8. 由浅入深:CNN中卷积层与转置卷积层的关系

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷 ...

  9. Android中判断网络连接是否可用及监控网络状态

    Android中判断网络连接是否可用及监控网络状态 作者: 字体:[增加 减小] 类型:转载 获取网络信息需要在AndroidManifest.xml文件中加入相应的权限,接下来详细介绍Android ...

随机推荐

  1. MVC微信浏览器图片上传(img转Base64)

    因公司业务需要,需要做一个微信公众号里的图片上传功能,主要用到的技术就是 img转base64 上到服务器 话不多说, 贴代码 先看前端显示出来的东西 OK 图片不重要,看代码 <!--微信图片 ...

  2. 通过ASP.NET Ajax技术模拟实现NBA比赛文字直播功能

    文字直播是满足一些观看视频直播而条件不足的球迷所设定的比赛直播方式,例如在长途车上为了能够了解比赛的实时赛况但又限于流量和网速等问题,就出现了文字直播的方式.无论是拥有无线上网卡的笔记本电脑或者手机等 ...

  3. Android_方向传感器

    Android方向传感器小案例,主要代码如下: package com.hb.direction; import android.app.Activity; import android.conten ...

  4. for 循环 乘法口诀表

    用for循环写乘法口诀表: for(var i = 1; i <= 9; i++) { var c=''; for(var x = 1; x <= i; x++) {    c=c+x+' ...

  5. centos7下安装python3 解决openssl等一系列问题

    最近折腾了下centos7,发现按正常方法安装python3.7后面会出现各种操蛋的问题. 主要的问题有三个,openssl版本过低,'_ctypes'缺失,以及安装后sqlite3缺失.下面我会贴出 ...

  6. 【转载】java文件路径问题及getResource和getClassLoader().getResource的区别

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u012572955/article/details/52880520我们经常在java的io操作中读 ...

  7. 【转载】servlet三大作用域:request,session,application

    javaweb开发中Servlet三大域对象的应用(request.session.application(ServletContext)). 1. requestrequest是表示一个请求,只要发 ...

  8. 【第二课】kaggle案例分析二

    Evernote Export 推荐系统比赛(常见比赛) 推荐系统分类 最能变现的机器学习应用 基于应用领域分类:电子商务推荐,社交好友推荐,搜索引擎推荐,信息内容推荐等 **基于设计思想:**基于协 ...

  9. Modbus串行通信

    一.Modbus通信协议简介 1. Modbus协议 Modbus 是一个请求/应答协议,并且提供功能码规定的服务.Modbu协议是 OSI 模型第 7 层上的应用层报文传输协议. MODBUS协议支 ...

  10. 洛谷P1115 最大子段和【dp】

    题目描述 给出一段序列,选出其中连续且非空的一段使得这段和最大. 输入输出格式 输入格式: 第一行是一个正整数NN,表示了序列的长度. 第二行包含NN个绝对值不大于1000010000的整数A_iAi ...