Global Statistics:

Common seen methods as such

1. Mean

2. Median

3. Standard deviation:  the larger the number means it various a lot.

4. Sum.

Rolling Statistics:

It use a time window, moving forward each day to calculate the mean value of those window periods.

To find which day is good to buy which day is good for sell, we can use Bollinger bands.

Bollinger bands:

import os
import pandas as pd
import matplotlib.pyplot as plt def test_run():
start_date='2017-01-01'
end_data='2017-12-15'
dates=pd.date_range(start_date, end_data) # Create an empty data frame
df=pd.DataFrame(index=dates) symbols=['SPY', 'AAPL', 'IBM', 'GOOG', 'GLD']
for symbol in symbols:
temp=getAdjCloseForSymbol(symbol)
df=df.join(temp, how='inner') return df if __name__ == '__main__':
df=test_run()
# data=data.ix['2017-12-01':'2017-12-15', ['IBM', 'GOOG']]
# df=normalize_data(df)
ax = df['SPY'].plot(title="SPY rolling mean", label='SPY')
rm = df['SPY'].rolling(20).mean()
rm.plot(label='Rolling mean', ax=ax)
ax.set_xlabel('Date')
ax.set_ylabel('Price')
ax.legend(loc="upper left")
plt.show()

Now we can calculate Bollinger bands, it is 2 times std value.

"""Bollinger Bands."""

import os
import pandas as pd
import matplotlib.pyplot as plt def symbol_to_path(symbol, base_dir="data"):
"""Return CSV file path given ticker symbol."""
return os.path.join(base_dir, "{}.csv".format(str(symbol))) def get_data(symbols, dates):
"""Read stock data (adjusted close) for given symbols from CSV files."""
df = pd.DataFrame(index=dates)
if 'SPY' not in symbols: # add SPY for reference, if absent
symbols.insert(0, 'SPY') for symbol in symbols:
df_temp = pd.read_csv(symbol_to_path(symbol), index_col='Date',
parse_dates=True, usecols=['Date', 'Adj Close'], na_values=['nan'])
df_temp = df_temp.rename(columns={'Adj Close': symbol})
df = df.join(df_temp)
if symbol == 'SPY': # drop dates SPY did not trade
df = df.dropna(subset=["SPY"]) return df def plot_data(df, title="Stock prices"):
"""Plot stock prices with a custom title and meaningful axis labels."""
ax = df.plot(title=title, fontsize=12)
ax.set_xlabel("Date")
ax.set_ylabel("Price")
plt.show() def get_rolling_mean(values, window):
"""Return rolling mean of given values, using specified window size."""
return values.rolling(window=window).mean() def get_rolling_std(values, window):
"""Return rolling standard deviation of given values, using specified window size."""
# TODO: Compute and return rolling standard deviation
return values.rolling(window=window).std() def get_bollinger_bands(rm, rstd):
"""Return upper and lower Bollinger Bands."""
# TODO: Compute upper_band and lower_band
upper_band = rstd * 2 + rm
lower_band = rm - rstd * 2
return upper_band, lower_band def test_run():
# Read data
dates = pd.date_range('2012-01-01', '2012-12-31')
symbols = ['SPY']
df = get_data(symbols, dates) # Compute Bollinger Bands
# 1. Compute rolling mean
rm_SPY = get_rolling_mean(df['SPY'], window=20) # 2. Compute rolling standard deviation
rstd_SPY = get_rolling_std(df['SPY'], window=20) # 3. Compute upper and lower bands
upper_band, lower_band = get_bollinger_bands(rm_SPY, rstd_SPY) # Plot raw SPY values, rolling mean and Bollinger Bands
ax = df['SPY'].plot(title="Bollinger Bands", label='SPY')
rm_SPY.plot(label='Rolling mean', ax=ax)
upper_band.plot(label='upper band', ax=ax)
lower_band.plot(label='lower band', ax=ax) # Add axis labels and legend
ax.set_xlabel("Date")
ax.set_ylabel("Price")
ax.legend(loc='upper left')
plt.show() if __name__ == "__main__":
test_run()

Daily return:

Subtract the previous day's closing price from the most recent day's closing price. In this example, subtract $35.50 from $36.75 to get $1.25. Divide your Step 4 result by the previous day's closing price to calculate the daily return. Multiply this result by 100 to convert it to a percentage.

"""Compute daily returns."""

import os
import pandas as pd
import matplotlib.pyplot as plt def symbol_to_path(symbol, base_dir="data"):
"""Return CSV file path given ticker symbol."""
return os.path.join(base_dir, "{}.csv".format(str(symbol))) def get_data(symbols, dates):
"""Read stock data (adjusted close) for given symbols from CSV files."""
df = pd.DataFrame(index=dates)
if 'SPY' not in symbols: # add SPY for reference, if absent
symbols.insert(0, 'SPY') for symbol in symbols:
df_temp = pd.read_csv(symbol_to_path(symbol), index_col='Date',
parse_dates=True, usecols=['Date', 'Adj Close'], na_values=['nan'])
df_temp = df_temp.rename(columns={'Adj Close': symbol})
df = df.join(df_temp)
if symbol == 'SPY': # drop dates SPY did not trade
df = df.dropna(subset=["SPY"]) return df def plot_data(df, title="Stock prices", xlabel="Date", ylabel="Price"):
"""Plot stock prices with a custom title and meaningful axis labels."""
ax = df.plot(title=title, fontsize=12)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
plt.show() def compute_daily_returns(df):
"""Compute and return the daily return values."""
# TODO: Your code here
# Note: Returned DataFrame must have the same number of rows
return df / df.shift(-1) -1 def test_run():
# Read data
dates = pd.date_range('2012-07-01', '2012-07-31') # one month only
symbols = ['SPY','XOM']
df = get_data(symbols, dates)
plot_data(df) # Compute daily returns
daily_returns = compute_daily_returns(df)
plot_data(daily_returns, title="Daily returns", ylabel="Daily returns") if __name__ == "__main__":
test_run()

Cumulative return:

an investment relative to the principal amount invested over a specified amount of time. ... To calculate cumulative return, subtract the original price of the investment from the current price and divide that difference by the original price.

[Python] Statistical analysis of time series的更多相关文章

  1. How-to: Do Statistical Analysis with Impala and R

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...

  2. python data analysis | python数据预处理(基于scikit-learn模块)

    原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...

  3. python学习笔记—DataFrame和Series的排序

    更多大数据分析.建模等内容请关注公众号<bigdatamodeling> ################################### 排序 ################## ...

  4. Should You Build Your Own Backtester?

    By Michael Halls-Moore on August 2nd, 2016 This post relates to a talk I gave in April at QuantCon 2 ...

  5. Python数据分析工具:Pandas之Series

    Python数据分析工具:Pandas之Series Pandas概述Pandas是Python的一个数据分析包,该工具为解决数据分析任务而创建.Pandas纳入大量库和标准数据模型,提供高效的操作数 ...

  6. 用 Python 通过马尔可夫随机场(MRF)与 Ising Model 进行二值图降噪

    前言 这个降噪的模型来自 Christopher M. Bishop 的 Pattern Recognition And Machine Learning (就是神书 PRML……),问题是如何对一个 ...

  7. 大数据分析与机器学习领域Python兵器谱

    http://www.thebigdata.cn/JieJueFangAn/13317.html 曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开发语言是C/ ...

  8. Machine and Deep Learning with Python

    Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstiti ...

  9. Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱(转)

    原文:http://www.52nlp.cn/python-网页爬虫-文本处理-科学计算-机器学习-数据挖掘 曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开 ...

随机推荐

  1. the prblem 3n+1

    题目描述计算机科学中的问题通常被归类为属于某一类问题(例如,NP,不可解,递归).在这个问题中,您将分析算法的属性,该算法的分类对于所有可能的输入都是未知的. 考虑下面的算法: 1.输入n 2.输出n ...

  2. SPA SEO SSR三者有什么区别

    SPA通俗的说就是单页面应用(single page application) 优点 页面之间的切换非常快 一定程度减少了后端服务器的压力 后端程序只需要提供api,不需要客户端到底是web端还是手机 ...

  3. HDU-4370 '0 or 1' 最短路 要考虑连通性

    题目链接:https://cn.vjudge.net/problem/HDU-4370 题意 给一个矩阵C(nn),要我们找到一个矩阵X(nn),满足以下条件: X_{12}+X_{13}+...X_ ...

  4. Codeforces 558E 线段树处理字符串内排序

    给出长度为n的字符串,m个操作. 每一个操作有三个值 l,r,op. op==1,表示将字符串中[ l ,r ]的部分依照升序排列. op==0,表示将字符串中[ l ,r ]的部分依照降序排列. 输 ...

  5. R语言适配问题集锦

    画图时的中文乱码问题 我这是Mac Yousemite 10.10.5,在两个地方遇到了中文乱码 1.使用wordcloud包绘制中文标签云时. library(wordcloud) mydata & ...

  6. 【每日一记】unity3d 图片置灰shader

    项目须要.參考了一下网上的资料,写了一个shader,给button置灰. shader详细实现例如以下: 2016.07.25补充,支持mask剪裁 Shader "Transparent ...

  7. 软件project之软件设计

    英雄是随着历史的时代产生的.软工也不例外.软件project这一门学科主要是为了解决当代软件危机而诞生的, 学习软件project的视频过后,最终让我揭开了它的神奇面纱,让我对软工设计有了一个初步的认 ...

  8. 10.29 工作笔记 ndk编译C++,提示找不到头文件(ndk-build error: string: No such file or directory)

    ndk编译C++.提示找不到头文件(ndk-build error: string: No such file or directory) 被这个问题弄得愁眉苦脸啊.心想为啥一个string都找不到呢 ...

  9. uva_127,栈以及vector的应用

    参考自http://www.cnblogs.com/maqiang/archive/2012/05/02/2479760.html #include <iostream> #include ...

  10. jni传递对象中包含arraylist对象。

    相信在使用jni的过程中,总是要传递各种各样的类型,在这其中,我也碰到了一些问题. 简单的传一些内容,相信在网上一搜一大把. 所以我们就来说说.传递对象中包含arraylist吧. 在这里先给大家一个 ...