hdu 1695 GCD (欧拉函数、容斥原理)
GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7357 Accepted Submission(s): 2698
pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
2
1 3 1 5 1
1 11014 1 14409 9
Case 1: 9
Case 2: 736427HintFor the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
对于一个[1,n]的区间。我们能够用欧拉函数算出总对数。
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<vector>
#define min(a,b) a<b?a:b
#define max(a,b) a>b? a:b
#define Max 100005
#define LL __int64
using namespace std;
LL sum[Max],tot;
int p[Max][20];
int num[Max];
void init()
{
sum[1]=1;
for(int i=2;i<Max;i++)
sum[i]=i;
for(int i=2;i<Max;i++)
if(sum[i]==i)
for(int j=i;j<Max;j+=i)
sum[j]=sum[j]/i*(i-1); }
void init2()
{
LL x,k,i,j;
for( i=1;i<=Max;i++)
{
x=i;k=0;
for(j=2;j<=sqrt(i);j++)
{
if(x%j==0){
while(x%j==0)x=x/j;
// p[i].push_back(j);
p[i][num[i]++]=j;
}
}
if(x>1)p[i][num[i]++]=x;
}
}
LL dfs(int n,int b,int x,int k)
{
LL ans=0;
for(int i=x;i<k;i++)
{
ans+=b/p[n][i]-dfs(n,b/p[n][i],i+1,k);
}
return ans;
}
int main()
{
LL T,a,b,c,d,k;
int i,j,t;
init();
init2();
// printf("%I64d %I64d\n",sum[2],sum[3]);
scanf("%I64d",&T);
t=0;
while(T--)
{
tot=0;
t++;
scanf("%I64d%I64d%I64d%I64d%I64d",&a,&b,&c,&d,&k);
printf("Case %d: ",t);
if(k==0){printf("0\n");continue;}
b=b/k;
d=d/k;
int m;
m=min(b,d);
d=max(b,d);
b=m;
for(i=1;i<=b;i++)
tot=tot+sum[i];
for(i=b+1;i<=d;i++)
{
// printf("%d\n",p[i].size());
tot+=b-dfs(i,b,0,num[i]);
}
printf("%I64d\n",tot);
}
return 0;
}
hdu 1695 GCD (欧拉函数、容斥原理)的更多相关文章
- hdu 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD 欧拉函数+容斥原理+质因数分解
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...
- HDU 1695 GCD (欧拉函数,容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- HDU 1695 GCD 欧拉函数+容斥定理
输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu 1695 GCD 欧拉函数 + 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K] 和 [L ...
- HDU 2588 GCD (欧拉函数)
GCD Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status De ...
- [hdu1695] GCD ——欧拉函数+容斥原理
题目 给定两个区间[1, b], [1, d],统计数对的个数(x, y)满足: \(x \in [1, b]\), \(y \in [1, d]\) ; \(gcd(x, y) = k\) HDU1 ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- HDU 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- axios的坑
1.axios默认发送application/json 格式 https://www.cnblogs.com/qdcnbj/p/8143155.html 资料: https://www.npmjs.c ...
- 【BZOJ4487】【JSOI2015】染色问题
题意: 棋盘是一个n×m的矩形,分成n行m列共n*m个小方格.现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定: 1. 棋盘的每一个小方格既可以染色(染成C种颜色中 ...
- LightOJ-1138 Trailing Zeroes (III) 唯一分解定理 算n!的某个因数个数
题目链接:https://cn.vjudge.net/problem/ 题意 找一个最小的正整数n 使得n!有a个零 思路 就是有几个因数10呗 考虑到10==2*5,也就是说找n!因数5有几个 数据 ...
- JVM内存管理简单剖析
Java是一个跨平台语言,屏蔽操作系统的差异,无需关心复杂内存管理,做到编写一次到处运行.其强大的能力源于Java Virtual Machine (虚拟机)默默的付出.代码运行在虚拟机之上,虚拟机运 ...
- oracle和mysql的分页
如果我们是通过JDBC的方式访问数据库,那么就有必要根据数据库类型采取不同的SQL分页语句,对于MySql数据库,我们可以采用limit语句进行分页,对于Oracle数据库,我们可以采用rownum的 ...
- 作为一名Android APP开发者的自我总结
每当接近年尾,最痛苦的工作无疑是写年终总结,写总结的同时不禁感叹这一年过得不容易阿.突然想起这一年也是自己开发Android APP的第一年,于是觉得应该给自己的APP来一个年终总结. 一.开发方面严 ...
- [Test] Easy automated testing in NodeJS with TestCafe
Quickly get up and running with sensible automated testing scenarios written in ES6. Installing and ...
- libevent的使用(socket)
这篇文章介绍下libevent在socket异步编程中的应用.在一些对性能要求较高的网络应用程序中,为了防止程序堵塞在socket I/O操作上造成程序性能的下降,须要使用异步编程,即程序准备好读写的 ...
- 改动Android设备信息,如改动手机型号为iPhone7黄金土豪版!
首先你的手机必需要有ROOT权限,误操作有风险需慎重 请先开启手机的USB调试,防止手机改动后无法启动时导致的无法修复 1.假设你是在手机上改动,直接使用RE文件管理器,编辑/system/build ...
- jsp出现错误can not find the tag directory /web-inf/tags
百度google了一大圈没找到中文答案,无奈之下硬着头皮看了一个英文答案http://stackoverflow.com/questions/11502703/eclipse-can-not-find ...