hdu 1695 GCD (欧拉函数、容斥原理)
GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7357 Accepted Submission(s): 2698
pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
2
1 3 1 5 1
1 11014 1 14409 9
Case 1: 9
Case 2: 736427HintFor the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
对于一个[1,n]的区间。我们能够用欧拉函数算出总对数。
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<vector>
#define min(a,b) a<b?a:b
#define max(a,b) a>b? a:b
#define Max 100005
#define LL __int64
using namespace std;
LL sum[Max],tot;
int p[Max][20];
int num[Max];
void init()
{
sum[1]=1;
for(int i=2;i<Max;i++)
sum[i]=i;
for(int i=2;i<Max;i++)
if(sum[i]==i)
for(int j=i;j<Max;j+=i)
sum[j]=sum[j]/i*(i-1); }
void init2()
{
LL x,k,i,j;
for( i=1;i<=Max;i++)
{
x=i;k=0;
for(j=2;j<=sqrt(i);j++)
{
if(x%j==0){
while(x%j==0)x=x/j;
// p[i].push_back(j);
p[i][num[i]++]=j;
}
}
if(x>1)p[i][num[i]++]=x;
}
}
LL dfs(int n,int b,int x,int k)
{
LL ans=0;
for(int i=x;i<k;i++)
{
ans+=b/p[n][i]-dfs(n,b/p[n][i],i+1,k);
}
return ans;
}
int main()
{
LL T,a,b,c,d,k;
int i,j,t;
init();
init2();
// printf("%I64d %I64d\n",sum[2],sum[3]);
scanf("%I64d",&T);
t=0;
while(T--)
{
tot=0;
t++;
scanf("%I64d%I64d%I64d%I64d%I64d",&a,&b,&c,&d,&k);
printf("Case %d: ",t);
if(k==0){printf("0\n");continue;}
b=b/k;
d=d/k;
int m;
m=min(b,d);
d=max(b,d);
b=m;
for(i=1;i<=b;i++)
tot=tot+sum[i];
for(i=b+1;i<=d;i++)
{
// printf("%d\n",p[i].size());
tot+=b-dfs(i,b,0,num[i]);
}
printf("%I64d\n",tot);
}
return 0;
}
hdu 1695 GCD (欧拉函数、容斥原理)的更多相关文章
- hdu 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD 欧拉函数+容斥原理+质因数分解
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...
- HDU 1695 GCD (欧拉函数,容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- HDU 1695 GCD 欧拉函数+容斥定理
输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu 1695 GCD 欧拉函数 + 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K] 和 [L ...
- HDU 2588 GCD (欧拉函数)
GCD Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status De ...
- [hdu1695] GCD ——欧拉函数+容斥原理
题目 给定两个区间[1, b], [1, d],统计数对的个数(x, y)满足: \(x \in [1, b]\), \(y \in [1, d]\) ; \(gcd(x, y) = k\) HDU1 ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- HDU 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- UNIX系统高级编程——第六章-系统数据文件和信息-总结
口令文件: /* The passwd structure. */ struct passwd { char *pw_name; /* Username. */ char *pw_passwd; /* ...
- Java默认方法
示例1 interface InterfaceA { default void say() { System.out.println("InterfaceA"); } } publ ...
- mysql联查中使用if和group by会让你的结果不是你想要的
mysql中的if语句遇到统计count group by的时候会出现不准确的情况,原因是分组后if条件的结果以第一条为准,不会跟着分组 例如: SELECT t1.*,t2.nick_name,t2 ...
- (QT)在命令行编译ui文件和程序
1.新建helloworld_2文件夹,将helloworld里的main.cpp和hellodialog.cpp两个文件复制过来. 2.打开控制台.此时不能用cmd,否则不能出最后的结果(lz在运行 ...
- Lorenzini:Laplacian与图上的黎曼-罗赫定理
前两天去听了一下搞代数几何的Dino Lorenzini在交大的两场讲座(“On Laplacian Of Graphs and Generalization”,“Riemann-Roch Theor ...
- Linux进程管理之状态(二)
二.进程的生命周期 进程是一个动态的实体,所以他是有生命的.从创建到消亡,是一个进程的整个生命周期.在这个周期中,进程可能会经历各种不同的状态.一般来说,所有进程都要经历以下的3个状态: 就绪态.指进 ...
- Linux学习总结(14)——Linux权限控制
linux中,权限的学习是必不可少的,不论是作为一名运维工程师或者是单一的管理者,学习好linux中的权限控制,你就可以保护好自己的隐私同时规划好你所管理的一切. 权限的学习是很多的,不要认为自己已经 ...
- Camera Calibration 相机标定:原理简介(四)
4 基于3D标定物的标定方法 使用基于3D标定物进行相机标定,是一种传统且常见的相机标定法.3D标定物在不同应用场景下不尽相同,摄影测量学中,使用的3D标定物种类最为繁杂,如图-1的室内控制场,由多条 ...
- SLF4j 和 common-logging
http://blog.csdn.net/xydds/article/details/51606010
- [Typescript] Build Method decorators in Typescript
To using decorate, we can modifiy tsconfig.json: { "compilerOptions": { ... "experime ...