扫描线+dp

先对坐标排序,然后·用set维护端点,每次插入左端点,扫描到右端点时删除。每次考虑新插入时分割了哪两个木板,自己分别连边,再删除原来的边,最后dp(好像得维护used,有环)

#include<bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
const int N = , inf = ;
struct data {
int l, r, h;
data(int l = , int r = , int h = ) : l(l), r(r), h(h) {}
} ed[N];
int n, t, cnt;
int dp[N], used[N];
PII e[N];
set<PII> s, m;
vector<PII> G[N];
void dfs(int u)
{
if(dp[u] == inf || used[u]) return;
used[u] = ;
for(int i = ; i < G[u].size(); ++i)
{
PII x = G[u][i];
int v = x.first, w = x.second;
dfs(v);
dp[u] = max(dp[u], min(dp[v], w));
}
}
int main()
{
scanf("%d%d", &n, &t);
for(int i = ; i <= n; ++i)
{
int h, l, r; scanf("%d%d%d", &h, &l, &r);
ed[i] = data(l, r, h);
e[++cnt] = make_pair(l, i);
e[++cnt] = make_pair(r, -i);
}
sort(e + , e + cnt + );
ed[n + ] = data(-inf, inf, );
ed[n + ] = data(-inf, inf, t);
s.insert(make_pair(, n + ));
s.insert(make_pair(t, n + ));
for(int i = ; i <= cnt; ++i)
{
int x = e[i].second;
if(x < )
{
s.erase(make_pair(ed[-x].h, -x));
continue;
}
PII t = make_pair(ed[x].h, x);
set<PII> :: iterator it = s.lower_bound(t);
PII up = *it;
--it;
PII low = *it;
m.erase(make_pair(up.second, low.second));
m.insert(make_pair(up.second, x));
m.insert(make_pair(x, low.second));
s.insert(t);
}
for(set<PII> :: iterator it = m.begin(); it != m.end(); ++it)
{
PII x = *it;
int len = min(ed[x.second].r, ed[x.first].r) - max(ed[x.second].l, ed[x.first].l);
G[x.second].push_back(make_pair(x.first, len));
}
dp[n + ] = inf;
dfs(n + );
printf("%d\n", dp[n + ]);
return ;
}

线段树维护+dp

这个方法好恶心,调了好长时间,边界搞错。

先离散化坐标,然后按高度排序,正反两次建边。但是一定要注意,边界很恶心,有可能出现1-2,2-3这样的,这样是不相交的。所以右端点要-1就避免了这种情况,因为如果原先只有1单位重合,那么现在不相交了。如果有1单位以上重合,那么现在还是相交的。

#include<bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
const int M = , inf = ;
int n, T, N;
vector<PII> G[M];
vector<int> v;
map<int, int> mp, mir;
int dp[M], used[M];
struct data {
int l, r, h;
} a[M];
struct seg {
int tree[M << ], tag[M << ];
void pushdown(int x)
{
if(!tag[x]) return;
tag[x << ] = tag[x];
tag[x << | ] = tag[x];
tree[x << ] = tag[x];
tree[x << | ] = tag[x];
tag[x] = ;
}
void update(int l, int r, int x, int a, int b, int c)
{
if(l > b || r < a) return;
if(l >= a && r <= b)
{
tree[x] = tag[x] = c;
return;
}
pushdown(x);
int mid = (l + r) >> ;
update(l, mid, x << , a, b, c);
update(mid + , r, x << | , a, b, c);
tree[x] = max(tree[x << ], tree[x << | ]);
}
int query(int l, int r, int x, int a, int b)
{
if(l > b || r < a) return ;
if(l >= a && r <= b) return tree[x];
pushdown(x);
int mid = (l + r) >> ;
return max(query(l, mid, x << , a, b), query(mid + , r, x << | , a, b));
}
} t;
void construct(int N, bool flag)
{
memset(t.tree, , sizeof(t.tree));
memset(t.tag, , sizeof(t.tag));
for(int i = ; i < n; ++i)
{
int k = t.query(, N, , a[i].l, a[i].l);
int low = max(a[i].l, a[k].l), high = min(a[i].r, a[k].r), len = mir[high] - mir[low];
int tt = t.query(, N, , low, high - );
if(tt == k && tt)
{
if(!flag) G[k].push_back(make_pair(i, len));
else G[n - i + ].push_back(make_pair(n - k + , len));
}
k = t.query(, N, , a[i].r - , a[i].r - );
low = max(a[i].l, a[k].l), high = min(a[i].r, a[k].r), len = mir[high] - mir[low];
tt = t.query(, N, , low, high - );
if(tt == k && tt)
{
if(!flag) G[k].push_back(make_pair(i, len));
else G[n - i + ].push_back(make_pair(n - k + , len));
}
t.update(, N, , a[i].l, a[i].r - , i);
}
}
void dfs(int u)
{
if(used[u] || dp[u] == inf) return;
used[u] = ;
for(int i = ; i < G[u].size(); ++i)
{
PII x = G[u][i];
int v = x.first, w = x.second;
dfs(v);
dp[u] = max(dp[u], min(dp[v], w));
}
}
bool cp(data x, data y)
{
return x.h == y.h ? x.l < y.l : x.h < y.h;
}
int main()
{
scanf("%d%d", &n, &T);
a[].h = ;
a[n + ].h = T;
a[].l = a[n + ].l = -inf;
a[].r = a[n + ].r = inf;
v.push_back(inf);
v.push_back(-inf);
for(int i = ; i <= n; ++i)
{
scanf("%d%d%d", &a[i + ].h, &a[i + ].l, &a[i + ].r);
v.push_back(a[i + ].l);
v.push_back(a[i + ].r);
}
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
N = v.size();
for(int i = ; i < v.size(); ++i)
{
mp[v[i]] = i + ;
mir[i + ] = v[i];
}
n += ;
for(int i = ; i <= n; ++i)
{
a[i].l = mp[a[i].l];
a[i].r = mp[a[i].r];
}
sort(a + , a + n + , cp);
construct(N, false);
reverse(a + , a + n + );
construct(N, true);
dp[n] = inf;
dfs();
printf("%d\n", dp[]);
return ;
}

269D的更多相关文章

  1. 269D Maximum Waterfall

    传送门 题目大意 给出一些墙,水从高往低流,每次只能到达一面墙,选择一个路径,使得路径上的流量的最小值最大. 分析 这是一道经典的扫描线题,我们发现能够合法的线段对数至多只有n对.将一条线段拆成两个点 ...

  2. PLSQL_Oracle Exception异常分类、异常抛出、异常处理、异常传播(概念)

    2014-06-03 Created By BaoXinjian

  3. javaWeb面试题(重要)

    1.Javaweb 技术的结构  1.1 技术结构图

随机推荐

  1. selenium的三种等待时间

    //隐式等待(20秒以内没哥一段时间就会去找元素,如果没找大也不会报错,过了20s才会报错) //driver.manage().timeouts().implicitlyWait(20, TimeU ...

  2. shouldComponentUpdate不能直接比较object

    凡是参阅过react官方英文文档的童鞋大体上都能知道对于一个组件来说,其state的改变(调用this.setState()方法)以及从父组件接受的props发生变化时,会导致组件重渲染,正所谓&qu ...

  3. ARX自定义实体

    本文介绍了构造自定义实体的步骤.必须继承的函数和必须注意的事项 1.新建一个从AcDbEntity继承的类,如EntTest,必须添加的头文件: "stdarx.h"," ...

  4. 戴尔14G服务器用H740P配置阵列

    公司采购了几台dell r740机器.做阵列的方式跟之前ctrl+r有很大改动. 戴尔14G机器已经面世一段时间了,14G的机器使用过后都能发现器性能比上一代机器提升了很多,今天给大家带来戴尔14代服 ...

  5. sublime text3 verilog代码编写高级操作篇

    2018.10.21 好久没写博客了,这段时间一直在学习一直在沉淀,然而发现学的越多会的更少,只能快马加鞭吧! 博主从大一暑假接触FPGA,到现在快一年半了,时间恍逝.刚开始入门也是用的quartus ...

  6. 创建pod索引库(Specs)

    专门用来存放xxx.podspec 的索引文件的库就叫做索引库.我们需要将这些索引文件上传到远程索引库才能保证其他的人能够拿来用. 创建一个远程索引库和本地索引库对应起来,步骤如下: 1.登录开源中国 ...

  7. 笔记,js对象浅析

    学习笔记, 来源:http://www.cnblogs.com/zuiyirenjian/p/3535126.html 作者:醉意人间  此外,关于自运行函数可参考  http://benalman. ...

  8. Shell 脚本编程 基本语法:

    Shell 脚本编程语法: 注: 文章来源 http://www.cnblogs.com/yunquan/p/6821850.html 视频来源:https://www.bilibili.com/vi ...

  9. 00_Rust安装及Hello World

    Rust 官网: https://www.rust-lang.org 版本:nightly.beta.stable 如何设计语言的讨论:https://github.com/rust-lang/rfc ...

  10. cuda npp库旋转图片

    #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h&g ...