题目链接:

http://codeforces.com/problemset/problem/919/E

题意:

让你求满足 \(na^n\equiv b \pmod p\) 的 \(n\) 的个数。

\(2 ≤ p ≤ 10^{6} + 3, 1 ≤ a, b < p, 1 ≤ x ≤ 10^{12}\).

题解:

因为:

$n \mod p $的循环节是 \(p\)

\(a^{n} \mod p\)的循环节是 \(p-1\)。(费马小定理)

所以: \(na^n \mod p​\)的循环节为 \(p*(p-1)\)。

因为 \(p\)是质数。

假设: \(n \mod p \equiv i, a^n\mod p\equiv a^j\).

\(a^n \mod p \equiv i\) ----①

$a^n\mod p\equiv a^j $ ----②

\(na^n\equiv b \pmod p\) ----③

可以得到: \(i \times a^j \equiv b \pmod p\).

我们现在枚举的\(a^n\) 中的 \(n\) 为 \(j\) , 满足 \(n \times a^n\ mod\ p\ = \ b\) 的 \(n\) 为 \(i\).

列出同余方程:

$i \equiv b*a^{-j} \pmod p $ ---①

\(i\equiv j \pmod {p-1}\) ---②

利用 \(CRT\) 可以解出 :\(i=(p-1)^2ba^{-j}+pj\) ,其中 \(a^{-j}\) 是$ a^{j}$ 在 $\mod p $意义下的逆元。

因为在所有 \(<=x\) 的 \(i\) 的倍数都满足条件,除法统计一下即可。

复杂度:\(O(p*logp)\)

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll; ll qpower(ll a,ll b, ll mod)
{
ll ans = 1;
while(b){
if(b&1) ans = ans * a % mod;
b>>=1;
a=a*a%mod;
}
return ans;
}
ll a,b,mod,x;
int main(int argc, char const *argv[]) {
std::cin >> a >> b >> mod >> x;
ll ans = 0;
for(int i = 1;i <= mod-1;i++) {
ll c = qpower( qpower(a, i , mod) , mod - 2, mod) * b % mod;
ll n = ((mod-1) * (mod-1) * c + mod * i) % (mod * (mod-1));
ans += ( x / (mod * (mod-1)) ) + (x % (mod * (mod-1)) >= n );
}
std::cout << ans << '\n';
return 0;
}

Codeforces Round #460 (Div. 2) E. Congruence Equation (CRT+数论)的更多相关文章

  1. Codeforces Round #460 (Div. 2).E 费马小定理+中国剩余定理

    E. Congruence Equation time limit per test 3 seconds memory limit per test 256 megabytes input stand ...

  2. [Codeforces]Codeforces Round #460 (Div. 2)

    Supermarket 找最便宜的就行 Solution Perfect Number 暴力做 Solution Seat Arrangement 注意当k=1时,横着和竖着是同一种方案 Soluti ...

  3. Codeforces Round #460 (Div. 2) ABCDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8397685.html 2018-02-01 $A$ 题意概括 你要买$m$斤水果,现在有$n$个超市让你选择. ...

  4. Codeforces Round #460 (Div. 2) 前三题

    Problem A:题目传送门 题目大意:给你N家店,每家店有不同的价格卖苹果,ai元bi斤,那么这家的苹果就是ai/bi元一斤,你要买M斤,问最少花多少元. 题解:贪心,找最小的ai/bi. #in ...

  5. Codeforces Round #460 (Div. 2)

    A. Supermarket We often go to supermarkets to buy some fruits or vegetables, and on the tag there pr ...

  6. Codeforces Round #460 (Div. 2): D. Substring(DAG+DP+判环)

    D. Substring time limit per test 3 seconds memory limit per test 256 megabytes input standard input ...

  7. Codeforces Round #460 (Div. 2)-D. Substring

    D. Substring time limit per test3 seconds memory limit per test256 megabytes Problem Description You ...

  8. Codeforces Round #460 (Div. 2)-C. Seat Arrangements

    C. Seat Arrangements time limit per test1 second memory limit per test256 megabytes Problem Descript ...

  9. Codeforces Round #460 (Div. 2)-B. Perfect Number

    B. Perfect Number time limit per test2 seconds memory limit per test256 megabytes Problem Descriptio ...

随机推荐

  1. pwd---以绝对路径的方式显示用户当前工作目录

    pwd命令以绝对路径的方式显示用户当前工作目录.命令将当前目录的全路径名称(从根目录)写入标准输出.全部目录使用/分隔.第一个/表示根目录,最后一个目录是当前目录.执行pwd命令可立刻得知您目前所在的 ...

  2. You have ettempted to queue to many files.You may select one files.

    <script type="text/javascript" src="/script/swfupload/swfupload.js"></s ...

  3. HDU 5375 Gray code(DP)

    题意:给一串字符串,里面可能出现0,1,?,当中问号可能为0或1,将这个二进制转换为格雷码后,格雷码的每位有一个权值,当格雷码位取1时.加上该位权值,求最大权值和为多少. 分析:比赛的时候愚了.竟然以 ...

  4. R中读取文件,找不到路径问题 No such file or directory

      R中读取文件,找不到路径问题 No such file or directory 近日,读取文件时.出现例如以下问题 > passenger = read.csv('internationa ...

  5. ios代理的使用,正向传值,逆向传值

    #import <UIKit/UIKit.h> #import "SubViewController.h" @interface ViewController : UI ...

  6. ListView-添加head跟foot item 问题

    今天在使用ListView 的 addFooterView 的方法时候,遇到了一个问题.当我代码中执行了如下的操作 ListView listView = new ListView(this); li ...

  7. 64。node.js 中间件express-session使用详解

    转自:http://jinjiakarl.com/2018/06/09/node-js-%E4%B8%AD%E9%97%B4%E4%BB%B6express-session%E4%BD%BF%E7%9 ...

  8. js--- 堆栈 于拷贝

    1.栈(stack)和堆(heap) stack为自动分配的内存空间,它由系统自动释放:而heap则是动态分配的内存,大小不定也不会自动释放. 2.基本类型和引用类型 基本类型:存放在栈内存中的简单数 ...

  9. Spark MLlib协同过滤算法

    算法说明 协同过滤(Collaborative Filtering,简称CF,WIKI上的定义是:简单来说是利用某个兴趣相投.拥有共同经验之群体的喜好来推荐感兴趣的资讯给使用者,个人透过合作的机制给予 ...

  10. Android框架之路——OkGo的使用

    一.简介 该库是封装了okhttp的标准RESTful风格的网络框架,可以与RxJava完美结合,比Retrofit更简单易用.支持大文件上传下载,上传进度回调,下载进度回调,表单上传(多文件和多参数 ...