题目链接:

https://jzoj.net/senior/#main/show/6101

题目:

题解:

设$f_i$表示从节点$i$到节点$n$的期望时间,$f_n=0$

最优策略就是如果从$i,j$之间存在边且$f_j<f_i$的话,那么就从$i$走到$j$

有$f_i=\frac{1}{m}(\sum_{link[i][j]=1}min(f_i,f_j))+1+\frac{m-du_i}{m}f_i$

$du_i$是$i$的度数

即$du_if_i=\sum_{link[i][j]=1}min(f_i,f_j)+m$

右边可以写成$vf_i+(\sum_{link[i][j]=1,f_j<f_i}f_j)$的形式

继续化简得到$(du_i-v)f_i=m+(\sum_{link[i][j]=1,f_j<f_i}f_j)$

注意到$du_i-v$与左边累加的$f_j$的个数是一样的

不妨设$z=du_i-v$,$s=\sum_{link[i][j]=1,f_i<f_j}f_j$

那么$f_i=\frac{s+m}{z}$

当我们要添加新的$f_j$来更新$f_i$时,设新加的$f_j$为$a$

$f_i^,=\frac{s+m+a}{z+1}$,假设$f_i^,<f_i$,即得到更优的答案

那么化简可得$f_j=a<\frac{s+m}{z}=f_i$,刚好满足约束条件$f_j<f_i$

即我们只要把比当前的$f_i$小的$f_j$用来更新$f_i$,那么就可以得到更优的答案

这个时候我们想到了类似$dijkstra$的算法,即每次取出最小的$f_i$来更新周围的点

虽然我仍然觉得代码的正确性并不显然,各位有什么好的想法可以告诉我

代码:

#include<algorithm>
#include<cstring>
#include<cstdio>
#include<iostream>
#include<cmath>
#include<queue>
using namespace std;
typedef double db; const int N=1e5+;
int n,m,tot;
int head[N],vis[N],cnt[N];
db sum[N];
struct EDGE
{
int to,nxt;
}edge[N<<];
struct node
{
int x,cnt;db sum;
};
priority_queue<node> q;
bool operator < (node a,node b) {return a.sum*b.cnt>b.sum*a.cnt;}
inline int read()
{
char ch=getchar();int s=,f=;
while (ch<''||ch>'') {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
void add(int u,int v)
{
edge[++tot]=(EDGE){v,head[u]};
head[u]=tot;
}
int main()
{
freopen("path.in","r",stdin);
freopen("path.out","w",stdout);
n=read();m=read();
for (int i=;i<=m;i++)
{
int u=read(),v=read();
add(u,v);add(v,u);
}
cnt[n]=;
q.push((node){n,,});
while (!q.empty())
{
int x=q.top().x;q.pop();
if (vis[x]) continue;
vis[x]=;
db val=(sum[x]+m*(x!=n))/(1.0*cnt[x]);
for (int i=head[x];i;i=edge[i].nxt)
{
int y=edge[i].to;
if (cnt[y]==||val*cnt[y]<(sum[y]+m))
{
sum[y]+=val;
cnt[y]++;
if (!vis[y]) q.push((node){y,cnt[y],sum[y]+m});
}
}
}
printf("%.10lf\n",(sum[]+m)/cnt[]);
return ;
}

[jzoj 6101] [GDOI2019模拟2019.4.2] Path 解题报告 (期望)的更多相关文章

  1. [jzoj 6093] [GDOI2019模拟2019.3.30] 星辰大海 解题报告 (半平面交)

    题目链接: https://jzoj.net/senior/#contest/show/2686/2 题目: 题解: 说实话这题调试差不多花了我十小时,不过总算借着这道题大概了解了计算几何的基础知识 ...

  2. [jzoj 6080] [GDOI2019模拟2019.3.23] IOer 解题报告 (数学构造)

    题目链接: https://jzoj.net/senior/#main/show/6080 题目: 题意: 给定$n,m,u,v$ 设$t_i=ui+v$ 求$\sum_{k_1+k_2+...+k_ ...

  3. [jzoj 6092] [GDOI2019模拟2019.3.30] 附耳而至 解题报告 (平面图转对偶图+最小割)

    题目链接: https://jzoj.net/senior/#main/show/6092 题目: 知识点--平面图转对偶图 在求最小割的时候,我们可以把平面图转为对偶图,用最短路来求最小割,这样会比 ...

  4. [jzoj 6086] [GDOI2019模拟2019.3.26] 动态半平面交 解题报告 (set+线段树)

    题目链接: https://jzoj.net/senior/#main/show/6086 题目: 题解: 一群数字的最小公倍数就是对它们质因数集合中的每个质因数的指数取$max$然后相乘 这样的子树 ...

  5. [jzoj 4528] [GDOI2019模拟2019.3.26] 要换换名字 (最大权闭合子图)

    题目链接: https://jzoj.net/senior/#contest/show/2683/0 题目: 题解: 不妨枚举一个点,让两颗树都以这个点为根,求联通块要么点数为$0$,要么包括根(即联 ...

  6. [jzoj 6087] [GDOI2019模拟2019.3.26] 获取名额 解题报告 (泰勒展开+RMQ+精度)

    题目链接: https://jzoj.net/senior/#main/show/6087 题目: 题解: 只需要统计$\prod_{i=l}^r (1-\frac{a_i}{x})$ =$exp(\ ...

  7. [jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)

    题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注: ...

  8. [JZOJ 5893] [NOIP2018模拟10.4] 括号序列 解题报告 (Hash+栈+map)

    题目链接: https://jzoj.net/senior/#main/show/5893 题目: 题解: 考虑暴力怎么做,我们枚举左端点,维护一个栈,依次加入元素,与栈顶元素和栈内第二个元素相同时弹 ...

  9. [JZOJ 5885] [NOIP2018模拟9.27] 物理实验 解题报告 (思维)

    题目链接: https://jzoj.net/senior/#main/show/5885 题目: 题解: 把$a$数组按升序排序 我们可以枚举$x$,发现对于任意$x$,最优情况下$y$一定等于$x ...

随机推荐

  1. android黑科技系列——静态分析技术来破解Apk

    一.前言 从这篇文章开始我们开始我们的破解之路,之前的几篇文章中我们是如何讲解怎么加固我们的Apk,防止被别人破解,那么现在我们要开始破解我们的Apk,针对于之前的加密方式采用相对应的破解技术,And ...

  2. 【Oracle】数据库热备

    1. 创建脚本 注:脚本第三行中的DB_NAME,需要改为自己的数据库名(show parameter name;): oracle用户下新建目录:/home/oracle/DB_NAME/hot_b ...

  3. C# 学习笔记1 _ 学习要点

    程序开始 MainConsole.WriteLine(“换行”);Console.Write(“不换行”);Console.ReadKey();   等待用户从键盘上键入一个键.Console.Cle ...

  4. equal height

    https://css-tricks.com/the-perfect-fluid-width-layout/ http://nicolasgallagher.com/multiple-backgrou ...

  5. boost的单例模式

    template <typename T> struct singleton_default {   private:     struct object_creator     {    ...

  6. 「Redis 笔记」常用命令

    编号 命令 描述 1 DEL key 此命令删除一个指定键(如果存在). 2 DUMP key 此命令返回存储在指定键的值的序列化版本. 3 EXISTS key 此命令检查键是否存在. 4 EXPI ...

  7. Matlab与C++混合编程

    原文链接:http://blog.csdn.net/zouxy09/article/details/20553007 一不小心,成了一个忠实复制者...

  8. (转)基于MVC4+EasyUI的Web开发框架经验总结(6)--在页面中应用下拉列表的处理

    http://www.cnblogs.com/wuhuacong/p/3840321.html 在很多Web界面中,我们都可以看到很多下拉列表的元素,有些是固定的,有些是动态的:有些是字典内容,有些是 ...

  9. C# model代码生成器

    using System.Collections.Generic; using System.Text; public class Class1 { //传递 1.表名 2.列名 3.类型 publi ...

  10. 【转】Oralce基础—Sqlplus工具运用 礼记八目 2017-12-20 20:22:45

    原文地址:https://www.toutiao.com/i6501603661565657614/ 一.数据库连接: sqlplus [user_name[/password][@ host_str ...