裸题,注意队列下标不要写错

Code:

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn = 2000000 + 3;
long long f[maxn], sum[maxn], a, b, c;
int n, q[maxn];
inline double re_x(int i){ return sum[i]; };
inline double re_y(int i){ return f[i] + a * sum[i] * sum[i] - b * sum[i]; }
inline double re_slope(int i,int j){ return (re_y(i) - re_y(j)) / (re_x(i) - re_x(j)); }
int main()
{ freopen("input.txt","r",stdin);
scanf("%d",&n);
scanf("%lld%lld%lld",&a,&b,&c);
for(int i = 1;i <= n; ++i)scanf("%lld",&sum[i]), sum[i] += sum[i - 1];
int head = 0, tail = 0;
for(int i = 1;i <= n; ++i)
{
while(head < tail && re_slope(q[head], q[head + 1]) > sum[i] * 2 * a) ++ head;
f[i] = f[q[head]] + a * (sum[i] - sum[q[head]]) * (sum[i] - sum[q[head]]) + b * (sum[i] - sum[q[head]]) + c;
while(head < tail && re_slope(i, q[tail - 1]) >re_slope(q[tail - 1], q[tail])) -- tail;
q[++tail] = i;
}
printf("%lld",f[n]);
return 0;
}

  

洛谷P3628 [APIO2010]特别行动队 斜率优化的更多相关文章

  1. 洛谷P3628 [APIO2010]特别行动队(动态规划,斜率优化,单调队列)

    洛谷题目传送门 安利蒟蒻斜率优化总结 由于人是每次都是连续一段一段地选,所以考虑直接对\(x\)记前缀和,设现在的\(x_i=\)原来的\(\sum\limits_{j=1}^ix_i\). 设\(f ...

  2. [洛谷P3628] [APIO2010]特别行动队

    洛谷题目链接:[APIO2010]特别行动队 题目描述 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 \(n\) 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特别行动 ...

  3. 洛谷 P3628 [APIO2010]特别行动队

    题意简述 将n个士兵分为若干组,每组连续,编号为i的士兵战斗力为xi 若i~j士兵为一组,该组初始战斗力为\( s = \sum\limits_{k = i}^{j}xk \),实际战斗力\(a * ...

  4. 洛谷P3628 [APIO2010]特别行动队(斜率优化)

    传送门 先写出转移方程$$dp[i]=max\{dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum[j])+c\}$$ 假设$j$比$k$更优,则有$$dp[j]+a*(s ...

  5. bzoj1911[Apio2010]特别行动队 斜率优化dp

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 5057  Solved: 2492[Submit][Statu ...

  6. [APIO2010]特别行动队 --- 斜率优化DP

    [APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...

  7. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  8. bzoj 1911: [Apio2010]特别行动队 -- 斜率优化

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MB Description Input Output Sample Input 4 ...

  9. APIO2010 特别行动队 & 斜率优化DP算法笔记

    做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...

随机推荐

  1. 洛谷11月月赛(284pts rank85)

    https://www.luogu.org/contestnew/show/12006 我是比赛完后在去写的 这是我第一次打洛谷月赛,之前一次是比赛完才去看而且写了第一题就没写后面的了 284分,太水 ...

  2. D2007从win7升级到win10下的莫名其妙问题。

    在win7下听说win10被推荐,于是升级到win10.结果使用d2007不能打开,出现莫名其妙的错误.把bin\bds.exe改名bds1.exe后居然可以启动了.一番折腾后,这把bds1.exe改 ...

  3. 组合数性质求K个数选取i*j个数分成j组的方案数

    分析:设方案数为ANS,C代表组合数: ANS=(C[K,I]*C[K-I,I][K-2*I,I]*...*C[K-(J-1)*I,I])/(J!); 也即: ANS=C[K,I*J]*(C[I*J, ...

  4. Syncfusion在WinPhone8.1实现统计图

    using Syncfusion.UI.Xaml.Charts; public static SfChart InitCompareChart(string fundName, double tenT ...

  5. 洛谷 P2023 BZOJ 1798 [AHOI2009]维护序列

    题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...

  6. 【ACM】poj_1363_Rails_201308081502

    Rails Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21528   Accepted: 8597 Descriptio ...

  7. 【ACM】NYOJ_506_洗澡_20130725

    洗澡时间限制:1000 ms  |  内存限制:65535 KB 难度:1描述 Mostrp是个爱干净的好少年. 有一次去澡堂洗澡时发现 澡堂的澡柜编号中没有出现过数字‘4’. Mostrp 感到很好 ...

  8. UnrealEngine4之UObject(一)

    Runtime最关键的实现是UObject,它是全部引擎层面.游戏层面对象的基类. UObject实现了动态创建.持久化.脚本化.内存管理.生存期控制. ----------------------- ...

  9. JAVAEE之-----MySQL分页技术(带搜索)

    需求: 为什么须要採用分页技术呢?在数据库中我们查询数据的时候,须要将数据返回到显示页面.数据库中含有大量数据,所有显示在一个页面过于太多,所以我们须要採用分页技术.每一页显示不同数据. 主要解决这个 ...

  10. &lt;LeetCode OJ&gt; 31. Next Permutation

    31. Next Permutation Total Accepted: 54346 Total Submissions: 212155 Difficulty: Medium Implement ne ...