最新上传的mcnn中有完整的数据读写示例,可以参考。

关于Tensorflow读取数据,官网给出了三种方法:

  • 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据。
  • 从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据。
  • 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况)。

对于数据量较小而言,可能一般选择直接将数据加载进内存,然后再分batch输入网络进行训练(tip:使用这种方法时,结合yield 使用更为简洁,大家自己尝试一下吧,我就不赘述了)。但是,如果数据量较大,这样的方法就不适用了,因为太耗内存,所以这时最好使用tensorflow提供的队列queue,也就是第二种方法 从文件读取数据。对于一些特定的读取,比如csv文件格式,官网有相关的描述,在这儿我介绍一种比较通用,高效的读取方法(官网介绍的少),即使用tensorflow内定标准格式——TFRecords

太长不看,直接看源码请猛戳我的github,记得加星哦。


TFRecords

TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是它能更好的利用内存,更方便复制和移动,并且不需要单独的标签文件(等会儿就知道为什么了)… …总而言之,这样的文件格式好处多多,所以让我们用起来吧。

TFRecords文件包含了tf.train.Example 协议内存块(protocol buffer)(协议内存块包含了字段 Features)。我们可以写一段代码获取你的数据, 将数据填入到Example协议内存块(protocol buffer),将协议内存块序列化为一个字符串, 并且通过tf.python_io.TFRecordWriter 写入到TFRecords文件。

从TFRecords文件中读取数据, 可以使用tf.TFRecordReadertf.parse_single_example解析器。这个操作可以将Example协议内存块(protocol buffer)解析为张量。

接下来,让我们开始读取数据之旅吧~

生成TFRecords文件

我们使用tf.train.Example来定义我们要填入的数据格式,然后使用tf.python_io.TFRecordWriter来写入。

import os
import tensorflow as tf
from PIL import Image cwd = os.getcwd() '''
此处我加载的数据目录如下:
0 -- img1.jpg
img2.jpg
img3.jpg
...
1 -- img1.jpg
img2.jpg
...
2 -- ...
这里的0, 1, 2...就是类别,也就是下文中的classes
classes是我根据自己数据类型定义的一个列表,大家可以根据自己的数据情况灵活运用
...
'''
writer = tf.python_io.TFRecordWriter("train.tfrecords")
for index, name in enumerate(classes):
class_path = cwd + name + "/"
for img_name in os.listdir(class_path):
img_path = class_path + img_name
img = Image.open(img_path)
img = img.resize((224, 224))
img_raw = img.tobytes() #将图片转化为原生bytes
example = tf.train.Example(features=tf.train.Features(feature={
"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
}))
writer.write(example.SerializeToString()) #序列化为字符串
writer.close()

关于Example Feature的相关定义和详细内容,我推荐去官网查看相关API。

基本的,一个Example中包含FeaturesFeatures里包含Feature(这里没s)的字典。最后,Feature里包含有一个FloatList, 或者ByteList,或者Int64List

就这样,我们把相关的信息都存到了一个文件中,所以前面才说不用单独的label文件。而且读取也很方便。

接下来是一个简单的读取小例子:

for serialized_example in tf.python_io.tf_record_iterator("train.tfrecords"):
example = tf.train.Example()
example.ParseFromString(serialized_example) image = example.features.feature['image'].bytes_list.value
label = example.features.feature['label'].int64_list.value
# 可以做一些预处理之类的
print image, label

使用队列读取

一旦生成了TFRecords文件,为了高效地读取数据,TF中使用队列(queue)读取数据。

def read_and_decode(filename):
#根据文件名生成一个队列
filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue) #返回文件名和文件
features = tf.parse_single_example(serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
}) img = tf.decode_raw(features['img_raw'], tf.uint8)
img = tf.reshape(img, [224, 224, 3])
img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
label = tf.cast(features['label'], tf.int32) return img, label

之后我们可以在训练的时候这样使用

img, label = read_and_decode("train.tfrecords")

#使用shuffle_batch可以随机打乱输入
img_batch, label_batch = tf.train.shuffle_batch([img, label],
batch_size=30, capacity=2000,
min_after_dequeue=1000)
init = tf.initialize_all_variables() with tf.Session() as sess:
sess.run(init)
threads = tf.train.start_queue_runners(sess=sess)
for i in range(3):
val, l= sess.run([img_batch, label_batch])
#我们也可以根据需要对val, l进行处理
#l = to_categorical(l, 12)
print(val.shape, l)

至此,tensorflow高效从文件读取数据差不多完结了。

恩?等等…什么叫差不多?对了,还有几个注意事项

第一,tensorflow里的graph能够记住状态(state),这使得TFRecordReader能够记住tfrecord的位置,并且始终能返回下一个。而这就要求我们在使用之前,必须初始化整个graph,这里我们使用了函数tf.initialize_all_variables()来进行初始化。

第二,tensorflow中的队列和普通的队列差不多,不过它里面的operationtensor都是符号型的(symbolic),在调用sess.run()时才执行。

第三, TFRecordReader会一直弹出队列中文件的名字,直到队列为空。


总结

  1. 生成tfrecord文件
  2. 定义record reader解析tfrecord文件
  3. 构造一个批生成器(batcher
  4. 构建其他的操作
  5. 初始化所有的操作
  6. 启动QueueRunner

例子代码请戳我的github,如果觉得对你有帮助的话可以加个星哦。

Tensorflow高效读取数据的方法的更多相关文章

  1. TensorFlow高效读取数据的方法——TFRecord的学习

    关于TensorFlow读取数据,官网给出了三种方法: 供给数据(Feeding):在TensorFlow程序运行的每一步,让python代码来供给数据. 从文件读取数据:在TensorFlow图的起 ...

  2. Tensorflow高效读取数据

    关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow ...

  3. 通用高效的数据修复方法:Row level repair

    导读:随着大数据的进一步发展,NoSQL 数据库系统迅速发展并得到了广泛的应用.其中,Apache Cassandra 是最广泛使用的数据库之一.对于 Cassandra 的优化是大家研究的热点,而 ...

  4. Tensorflow中使用TFRecords高效读取数据--结合Attention-over-Attention Neural Network for Reading Comprehension

    原文链接:https://arxiv.org/pdf/1607.04423.pdf 本片论文主要讲了Attention Model在完形填空类的阅读理解上的应用. 转载:https://blog.cs ...

  5. tensorflow批量读取数据

    Tensorflow 数据读取有三种方式: Preloaded data: 预加载数据,在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). Feeding: Pyt ...

  6. "笨方法"学习CNN图像识别(二)—— tfrecord格式高效读取数据

    原文地址:https://finthon.com/learn-cnn-two-tfrecord-read-data/-- 全文阅读5分钟 -- 在本文中,你将学习到以下内容: 将图片数据制作成tfre ...

  7. 吴裕雄 PYTHON 神经网络——TENSORFLOW MNIST读取数据

    from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E ...

  8. NPOI操作Excel时使用列头来读取数据的方法

    首先定义扩展方法: public static ICell GetCell(this IRow row, string clounmName) { IRow firstRow = row.Sheet. ...

  9. 第十二节,TensorFlow读取数据的几种方法以及队列的使用

    TensorFlow程序读取数据一共有3种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow图的起 ...

随机推荐

  1. java构造函数重载this(true)

    看storm的代码的时候,发现这样一句java代码, 很是不理解 google之后,发现原来是java语法中,构造函数重载,this()调用的其实就是 构造函数.This is constructor ...

  2. Rails 异常处理 && 性能

    Rails 异常处理 的多种处理方法 1.  routes match '*path', via: :all, to: 'controller#action' 2.  application.rb 的 ...

  3. 怎样又一次编译linux内核

    linux作为自由软件.在广大爱好者的支持下,内核版本号不断更新. 新的内核修订了就得内核的bug,并添加了很多新的特性.假设用户须要使用这些新的特性或者依据自己的系统量身定做一个更高效或更稳定的内核 ...

  4. 【Python学习笔记】-APP图标显示未读消息数目

    以小米手机系统为例,当安装的某个APP有未读消息时,就会在该APP图标的右上角显示未读消息的数目.本文主要解说怎样用Python语言实现图标显示未读消息的数目.首先,还是要用到Python中PIL库, ...

  5. BZOJ1053 反素数

    题目大意 对于任何正整数x,其约数的个数记作g(x).如果某个正整数x满足对任意的0<i<x,都有g(x)>g(i) ,则称x为反质数.现在给定一个数N,求出不超过N的最大的反质数. ...

  6. SpringAop中JoinPoint对象

    来自:http://blog.csdn.net/it_zouxiang/article/details/52576917 JoinPoint的用法 JoinPoint 对象 JoinPoint对象封装 ...

  7. 线段树(1)——点修改&建树

    #include<cstdio> #include<algorithm> using namespace std; #define MAX 10000 #define INF ...

  8. Linux Shell Scripting Cookbook 读书笔记 4

    正则, grep 1. 正则表达式  正则表达式  描述  示例 ^ 行起始标记  ^hell匹配以hell开头的行 $ 行尾标记  test$匹配以test结尾的行 . 匹配任意一个字符  hell ...

  9. Class工具类

    Class工具类,提供操作class类的方法,源码如下: import java.io.File; import java.io.FileFilter; import java.io.IOExcept ...

  10. iOS 应用开发入门指南

    前言:http://www.guomii.com/posts/20250安装工具:http://www.guomii.com/posts/20255工具:http://www.guomii.com/p ...