本文主要解说局部加权(线性)回归。在解说局部加权线性回归之前,先解说两个概念:欠拟合、过拟合。由此引出局部加权线性回归算法。

欠拟合、过拟合

例如以下图中三个拟合模型。第一个是一个线性模型。对训练数据拟合不够好,损失函数取值较大。如图中第二个模型,假设我们在线性模型上加一个新特征

x%5E%7B2%7D" alt="" style="border:0px">项,拟合结果就会好一些。

图中第三个是一个包括5阶多项式的模型,对训练数据差点儿完美拟合。

模型一没有非常好的拟合训练数据,在训练数据以及在測试数据上都存在较大误差。这样的情况称之为欠拟合(underfitting)

模型三对训练数据拟合的非常不错,可是在測试数据上的精确度并不理想。这样的对训练数据拟合较好。而在測试数据上精确度较低的情况称之为过拟合(overfitting)

局部加权线性回归(Locally weighted linear regression,LWR)

从上面欠拟合和过拟合的样例中我们能够体会到,在回归预測模型中。预測模型的精确度特别依赖于特征的选择。特征选择不合适。往往会导致预測结果的天差地别。局部加权线性回归非常好的攻克了这个问题,它的预測性能不太依赖于选择的特征,又能非常好的避免欠拟合和过拟合的风险。

在理解局部加权线性回归前,先回顾一下线性回归。

线性回归的损失函数把训练数据中的样本看做是平等的,并没有权重的概念。

线性回归的具体请參考《线性回归、梯度下降》,它的主要思想为:

而局部加权线性回归,在构造损失函数时增加了权重w,对距离预測点较近的训练样本给以较高的权重,距离预測点较远的训练样本给以较小的权重。权重的取值范围是(0,1)。

局部加权线性回归的主要思想是:

当中如果权重符合公式

公式中权重大小取决于预測点x与训练样本的距离。假设|-
x|较小,那么取值接近于1,反之接近0。參数τ称为bandwidth。用于控制权重的变化幅度。

局部加权线性回归长处是不太依赖特征选择。并且仅仅须要用线性模型就训练出不错的拟合模型。

可是因为局部加权线性回归是一个非參数学习算法,损失数随着预測值的不同而不同,这样θ无法事先确定。每次预測时都须要扫描全部数据又一次计算θ,所以计算量比較大。

局部加权回归、欠拟合、过拟合 - Andrew Ng机器学习公开课笔记1.3的更多相关文章

  1. Andrew Ng机器学习公开课笔记 -- 线性回归和梯度下降

    网易公开课,监督学习应用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 线性回归(Linear Regression) 先看个 ...

  2. Andrew Ng机器学习公开课笔记 -- Regularization and Model Selection

    网易公开课,第10,11课 notes,http://cs229.stanford.edu/notes/cs229-notes5.pdf   Model Selection 首先需要解决的问题是,模型 ...

  3. Andrew Ng机器学习公开课笔记 -- Mixtures of Gaussians and the EM algorithm

    网易公开课,第12,13课 notes,7a, 7b,8 从这章开始,介绍无监督的算法 对于无监督,当然首先想到k means, 最典型也最简单,有需要直接看7a的讲义   Mixtures of G ...

  4. Andrew Ng机器学习公开课笔记 -- Generalized Linear Models

    网易公开课,第4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面介绍一个线性回归问题,符合高斯分布 一个分类问题,logstic回 ...

  5. Andrew Ng机器学习公开课笔记 -- Logistic Regression

    网易公开课,第3,4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面讨论了线性回归问题, 符合高斯分布,使用最小二乘来作为损失函数 ...

  6. Andrew Ng机器学习公开课笔记–Principal Components Analysis (PCA)

    网易公开课,第14, 15课 notes,10 之前谈到的factor analysis,用EM算法找到潜在的因子变量,以达到降维的目的 这里介绍的是另外一种降维的方法,Principal Compo ...

  7. Andrew Ng机器学习公开课笔记 – Factor Analysis

    网易公开课,第13,14课 notes,9 本质上因子分析是一种降维算法 参考,http://www.douban.com/note/225942377/,浅谈主成分分析和因子分析 把大量的原始变量, ...

  8. Andrew Ng机器学习公开课笔记 -- 学习理论

    网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法   Bias/va ...

  9. Andrew Ng机器学习公开课笔记 -- 支持向量机

    网易公开课,第6,7,8课 notes,http://cs229.stanford.edu/notes/cs229-notes3.pdf SVM-支持向量机算法概述, 这篇讲的挺好,可以参考   先继 ...

随机推荐

  1. 窗口管理工具 screen

    简介 Screen是一款用于命令行终端切换的自由软件 用户可以通过该软件同时连接多个本地或远程的命令行会话,并在其间自由切换 GNU Screen可以看作是窗口管理器的命令行界面版本 它提供了统一的管 ...

  2. AT1145 ホリドッグ

    洛谷的题解区里竟然没有O(1)做法详解-- 题面就是要判断\(1+2+\dots+n\)是不是素数 很容易让人想到上面的式子事实上等于\(n(n+1)/2\) 根据质数的定义,质数只能被1和自身整除 ...

  3. 大道至简第一章读后感 Java伪代码形式

    观看了大道至简的第一章之后,从愚公移山的故事中我们可以抽象出一个项目, 下面用Java 伪代码的形式来进行编写: import java(愚公移山的故事) //愚公移山 public class yu ...

  4. java 日期和字符串互转,依据当天整天时间 得到当天最后一秒的日期时间

    java 日期和字符串互转.依据当天整天时间   得到当天最后一秒的日期时间 package com.hi; import java.text.DateFormat; import java.text ...

  5. (转)<![CDATA[]]>和转义字符

    被<![CDATA[]]>这个标记所包含的内容将表示为纯文本,比如<![CDATA[<]]>表示文本内容“<”. 此标记用于xml文档中,我们先来看看使用转义符的情 ...

  6. Scrapy研究探索(六)——自己主动爬取网页之II(CrawlSpider)

    原创,转载注明:http://blog.csdn.net/u012150179/article/details/34913315 一.目的. 在教程(二)(http://blog.csdn.net/u ...

  7. Java知识点解析

    JAVA 1:简述Java的基本历史 java起源于SUN公司的一个GREEN的项目,其原先目的是为家用消费电子产品 发送一个信息的分布式代码系统,通过发送信息控制电视机.冰箱等. 2:简单写出Jav ...

  8. ubuntu16.04环境下安装配置openface人脸识别程序

    参考http://blog.csdn.net/weixinhum/article/details/77046873 最近项目需要用到人脸训练和检测的东西,选用了OpenFace进行,因而有此文. 本人 ...

  9. bzoj1202: [HNOI2005]狡猾的商人(差分约束)

    1202: [HNOI2005]狡猾的商人 题目:传送门 题解: 据说是带权并查集!蒟蒻不会啊!!! 可是听说lxj大佬用差分约束A了,于是开始一通乱搞. 设s[i]为前i个月的总收益,那么很容易就可 ...

  10. How To Do @Async in Spring--转

    原文地址:http://www.baeldung.com/spring-async 1. Overview In this article, we’ll explore the asynchronou ...