使用Keras编写GAN的入门

GAN

Time: 2017-5-31


前言

主要参考了网页[1]的教程,同时主要算法来自Ian J. Goodfellow 的论文,算法如下:

gan

代码

%matplotlib inline
import numpy as np
import pandas as pd from keras.models import Model
from keras.layers import Dense, Activation, Input, Reshape
from keras.layers import Conv1D, Flatten, Dropout
from keras.optimizers import SGD, Adam from tqdm import tqdm_notebook as tqdm # 进度条 # 生成随机正弦曲线的数据
def sample_data(n_samples=10000, x_vals=np.arange(0, 5, .1), max_offset=1000, mul_range=[1, 2]):
vectors = []
for i in range(n_samples):
offset = np.random.random() * max_offset
mul = mul_range[0] + np.random.random() * (mul_range[1] - mul_range[0])
vectors.append(np.sin(offset + x_vals * mul) / 2 + .5) return np.array(vectors) # 创建生成模型
def get_generative(G_in, dense_dim=200, out_dim=50, lr=1e-3):
x = Dense(dense_dim)(G_in)
x = Activation('tanh')(x)
G_out = Dense(out_dim, activation='tanh')(x)
G = Model(G_in, G_out)
opt = SGD(lr=lr) G.compile(loss='binary_crossentropy', optimizer=opt) return G, G_out # 创建判别模型
def get_discriminative(D_in, lr=1e-3, drate = .25, n_channels=50, conv_sz=5, leak=.2):
x = Reshape((-1, 1))(D_in)
x = Conv1D(n_channels, conv_sz, activation='relu')(x)
x = Dropout(drate)(x)
x = Flatten()(x)
x = Dense(n_channels)(x)
D_out = Dense(2, activation='sigmoid')(x)
D = Model(D_in, D_out)
dopt = Adam(lr=lr)
D.compile(loss='binary_crossentropy', optimizer=dopt) return D, D_out def set_trainability(model, trainable=False):
model.trainable = trainable
for layer in model.layers:
layer.trainable = trainable def make_gan(GAN_in, G, D):
set_trainability(D, False)
x = G(GAN_in)
GAN_out = D(x)
GAN = Model(GAN_in, GAN_out)
GAN.compile(loss='binary_crossentropy', optimizer=G.optimizer)
return GAN, GAN_out # 通过生成数据 预训练判别模型
def sample_data_and_gen(G, noise_dim=10, n_samples=10000):
XT = sample_data(n_samples=n_samples)
XN_noise = np.random.uniform(0, 1, size=[n_samples, noise_dim])
XN = G.predict(XN_noise)
X = np.concatenate((XT, XN))
y = np.zeros((2*n_samples, 2))
y[:n_samples, 1] = 1
y[n_samples:, 0] = 1 return X, y def pretrain(G, D, noise_dim=10, n_samples=10000, batch_size=32):
X, y = sample_data_and_gen(G, noise_dim=noise_dim, n_samples=n_samples)
set_trainability(D, True)
D.fit(X, y, epochs=1, batch_size=batch_size) # 开始交叉训练步骤
def sample_noise(G, noise_dim=10, n_samples=10000):
X = np.random.uniform(0, 1, size=[n_samples, noise_dim])
y = np.zeros((n_samples, 2))
y[:, 1] = 1 return X, y def train(GAN, G, D, epochs=500, n_samples=10000, noise_dim=10, batch_size=32, verbose=False, v_freq=50):
d_loss = []
g_loss = []
e_range = range(epochs)
if verbose:
e_range = tqdm(e_range) for epoch in e_range:
X, y = sample_data_and_gen(G, n_samples=n_samples, noise_dim=noise_dim) # 对D进行训练
set_trainability(D, True)
d_loss.append(D.train_on_batch(X, y)) X, y = sample_noise(G, n_samples=n_samples, noise_dim=noise_dim) # 对G训练
set_trainability(D, False)
g_loss.append(GAN.train_on_batch(X, y)) if verbose and (epoch + 1) % v_freq == 0:
print("Epoch #{}: Generative Loss: {}, Discriminative Loss: {}".format(epoch + 1, g_loss[-1], d_loss[-1])) return d_loss, g_loss
ax = pd.DataFrame(np.transpose(sample_data(5))).plot()
G_in = Input(shape=[10])
G, G_out = get_generative(G_in)
G.summary() D_in = Input(shape=[50])
D, D_out = get_discriminative(D_in)
D.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_9 (InputLayer) (None, 10) 0
_________________________________________________________________
dense_13 (Dense) (None, 200) 2200
_________________________________________________________________
activation_4 (Activation) (None, 200) 0
_________________________________________________________________
dense_14 (Dense) (None, 50) 10050
=================================================================
Total params: 12,250
Trainable params: 12,250
Non-trainable params: 0
_________________________________________________________________
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_10 (InputLayer) (None, 50) 0
_________________________________________________________________
reshape_4 (Reshape) (None, 50, 1) 0
_________________________________________________________________
conv1d_4 (Conv1D) (None, 46, 50) 300
_________________________________________________________________
dropout_4 (Dropout) (None, 46, 50) 0
_________________________________________________________________
flatten_4 (Flatten) (None, 2300) 0
_________________________________________________________________
dense_15 (Dense) (None, 50) 115050
_________________________________________________________________
dense_16 (Dense) (None, 2) 102
=================================================================
Total params: 115,452
Trainable params: 115,452
Non-trainable params: 0
_________________________________________________________________

png
GAN_in = Input([10])
GAN, GAN_out = make_gan(GAN_in, G, D)
GAN.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_11 (InputLayer) (None, 10) 0
_________________________________________________________________
model_9 (Model) (None, 50) 12250
_________________________________________________________________
model_10 (Model) (None, 2) 115452
=================================================================
Total params: 127,702
Trainable params: 12,250
Non-trainable params: 115,452
_________________________________________________________________
pretrain(G, D)
Epoch 1/1
20000/20000 [==============================] - 3s - loss: 0.0072
d_loss, g_loss = train(GAN, G, D, verbose=True)
Epoch #50: Generative Loss: 4.41527795791626, Discriminative Loss: 0.6733301877975464
Epoch #100: Generative Loss: 3.8898046016693115, Discriminative Loss: 0.09901376813650131
Epoch #150: Generative Loss: 6.2410054206848145, Discriminative Loss: 0.034074194729328156
Epoch #200: Generative Loss: 5.206066608428955, Discriminative Loss: 0.13078376650810242
Epoch #250: Generative Loss: 3.5144925117492676, Discriminative Loss: 0.07160962373018265
Epoch #300: Generative Loss: 3.705162525177002, Discriminative Loss: 0.05893774330615997
Epoch #350: Generative Loss: 3.511479616165161, Discriminative Loss: 0.09775738418102264
Epoch #400: Generative Loss: 4.141300678253174, Discriminative Loss: 0.03169865906238556
Epoch #450: Generative Loss: 3.500260829925537, Discriminative Loss: 0.05957922339439392
Epoch #500: Generative Loss: 2.9797921180725098, Discriminative Loss: 0.10566817969083786
ax = pd.DataFrame(
{
'Generative Loss': g_loss,
'Discriminative Loss': d_loss,
}
).plot(title='Training loss', logy=True)
ax.set_xlabel("Epochs")
ax.set_ylabel("Loss")

png
N_VIEWED_SAMPLES = 2
data_and_gen, _ = sample_data_and_gen(G, n_samples=N_VIEWED_SAMPLES)
pd.DataFrame(np.transpose(data_and_gen[N_VIEWED_SAMPLES:])).plot()

png
N_VIEWED_SAMPLES = 2
data_and_gen, _ = sample_data_and_gen(G, n_samples=N_VIEWED_SAMPLES)
pd.DataFrame(np.transpose(data_and_gen[N_VIEWED_SAMPLES:])).rolling(5).mean()[5:].plot()

png

reference

[1] http://www.rricard.me/machine/learning/generative/adversarial/networks/keras/tensorflow/2017/04/05/gans-part2.html#Imports

使用Keras编写GAN的入门的更多相关文章

  1. BAT脚本编写教程简单入门篇

    BAT脚本编写教程简单入门篇 批处理文件最常用的几个命令: echo表示显示此命令后的字符 echo on  表示在此语句后所有运行的命令都显示命令行本身 echo off 表示在此语句后所有运行的命 ...

  2. keras搭建神经网络快速入门笔记

    之前学习了tensorflow2.0的小伙伴可能会遇到一些问题,就是在读论文中的代码和一些实战项目往往使用keras+tensorflow1.0搭建, 所以本次和大家一起分享keras如何搭建神经网络 ...

  3. 在ubuntu下编写python(python入门)

    在ubuntu下编写python 一般情况下,ubuntu已经安装了python,打开终端,直接输入python,即可进行python编写. 默认为python2 如果想写python3,在终端输入p ...

  4. 【深度学习】--GAN从入门到初始

    一.前述 GAN,生成对抗网络,在2016年基本火爆深度学习,所有有必要学习一下.生成对抗网络直观的应用可以帮我们生成数据,图片. 二.具体 1.生活案例 比如假设真钱 r 坏人定义为G  我们通过 ...

  5. Linux编写Shell脚本入门

    一. 一般编写shell需要分3个步骤 1. 新建一个脚本文件,并编写程序 vi hello.sh #!/bin/bash #注释 #输出 printf '%s\n' "Hello Worl ...

  6. keras人工神经网络构建入门

    //2019.07.29-301.Keras 是提供一些高度可用神经网络框架的 Python API ,能帮助你快速的构建和训练自己的深度学习模型,它的后端是 TensorFlow 或者 Theano ...

  7. keras运行gan的几个bug解决

    http://blog.csdn.net/u012317000/article/details/79211274 https://www.jianshu.com/p/5b1f7004144d

  8. GAN网络之入门教程(四)之基于DCGAN动漫头像生成

    目录 使用前准备 数据集 定义参数 构建网络 构建G网络 构建D网络 构建GAN网络 关于GAN的小trick 训练 总结 参考 这一篇博客以代码为主,主要是来介绍如果使用keras构建一个DCGAN ...

  9. WPF 像素着色器入门:使用 Shazzam Shader Editor 编写 HLSL 像素着色器代码

    原文:WPF 像素着色器入门:使用 Shazzam Shader Editor 编写 HLSL 像素着色器代码 HLSL,High Level Shader Language,高级着色器语言,是 Di ...

随机推荐

  1. 3最短路的几种解法 ------例题< 最短路 >

    点击进入例题   最短路 我知道的有三种方法 1 : 深搜 每次  每次有更小的路径时  就更新   ,   2 :   Dijkstra    3 : floyd 前两种   是  单源 最短路径 ...

  2. ASP.NET MVC5 之数据迁移

    SQL 中新建数据库 DataSystem 1.web.config 数据库连接字符串: <add name="APPDataConnection" connectionSt ...

  3. yield from (python生成器)

    #生成器中的yield from是干什么用的(一般多用于线程,协程那)def func(): # for i in 'AB': # yield i yield from 'AB' # 就相当于上面的f ...

  4. PHP网站 通过js方式判断是否是手机访问,若是 跳转到手机版网址!

    <script type="text/javascript" src="http://i3.dukuai.com/ui/js/jquery-1.32pack.js& ...

  5. RabbitMQ~消费者实时与消息服务器保持通话

    这个文章主要介绍简单的消费者的实现,rabbitMQ实现的消费者可以对消息服务器进行实时监听,当有消息(生产者把消息推到服务器上之后),消费者可以自动去消费它,这通常是开启一个进程去维护这个对话,它与 ...

  6. UltraEdit(UE)window破解方法

      安装UltraEdit(一路下一步,无难点)成功后,打开软件弹出如下使用模式提示信息.   关掉UltraEdit软件,同时  断本机网络.重新打开UltraEdit软件:   点击[输入许可证密 ...

  7. C# ADO.NET动态数据的增删改查(第五天)

    一.插入登录框中用户输入的动态数据 /// <summary> /// 添加数据 /// </summary> /// <param name="sender& ...

  8. 预处理、const、static、sizeof

    1.预处理和宏定义 #define xxxx #ifdef xxxx ; #elseif xxxx; #endif 2.c++求随机数 rand(),rand()会返回一随机数值, 范围在0至RAND ...

  9. (转)分布式文件存储FastDFS(五)FastDFS常用命令总结

    http://blog.csdn.net/xingjiarong/article/details/50561471 1.启动FastDFS tracker: /usr/local/bin/fdfs_t ...

  10. Android 动态设置 layout_centerInParent

    RelativeLayout.LayoutParams rp = new RelativeLayout.LayoutParams(LayoutParams.WRAP_CONTENT, LayoutPa ...