N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人重新从1开始报数。问最后剩下的人的编号。
例如:N = 3,K = 2。2号先出列,然后是1号,最后剩下的是3号。
Input
2个数N和K,表示N个人,数到K出列。(2 <= N, K <= 10^6)
Output
最后剩下的人的编号

-----------------------------------------------------------------------------------------------------------------------------------------------------

N个人,编号(0-N-1)。
第一个出去的肯定是编号为(K%N)-1。第二轮从K%N开始新的编号:

接下来就变成N-1个人的子问题了。
令F(N)代表N个人时最后剩下的人的编号。那么F(N) = G(F(N-1));
函数G就是编号的对应,可以看出,G(i) = (i+K%N)%N = (i+K)%N。也就是向前平移了K个位置。
 
递归的出口是F(1)=0;因为1个人时结果就是编号为0的人。
 
下面代码是递归的,用递推的会省空间。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int K;
int phi(int n){
if(n==) return ;
return (phi(n-)+K)%n;
}
int main(){
int n;
cin>>n>>K;
printf("%d\n",phi(n)+);
return ;
}

51nod1073-约瑟夫环,递归。的更多相关文章

  1. php解决约瑟夫环

    今天偶遇一道算法题 "约瑟夫环"是一个数学的应用问题:一群猴子排成一圈,按1,2,-,n依次编号.然后从第1只开始数,数到第m只,把它踢出圈,从它后面再开始数, 再数到第m只,在把 ...

  2. Java实现约瑟夫环

    什么是约瑟夫环呢? 约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个 ...

  3. poj 3517 约瑟夫环

    最简单的约瑟夫环,虽然感觉永远不会考约瑟夫环,但数学正好刷到这部分,跳过去的话很难过 直接粘别人分析了 约瑟夫问题: 用数学方法解的时候需要注意应当从0开始编号,因为取余会等到0解. 实质是一个递推, ...

  4. C++ 约瑟夫环

    约瑟夫环: 已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去,直到圆桌周 ...

  5. 用pl/sql游标实现约瑟夫环

    什么是约瑟夫环: 约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为1的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数, ...

  6. 51nod 1073 约瑟夫环

    题目链接 先说一下什么是约瑟夫环,转自:传送门 关于约瑟夫环问题,无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大( ...

  7. 通过例子进阶学习C++(七)CMake项目通过模板库实现约瑟夫环

    本文是通过例子学习C++的第七篇,通过这个例子可以快速入门c++相关的语法. 1.问题描述 回顾一下约瑟夫环问题:n 个人围坐在一个圆桌周围,现在从第 s 个人开始报数,数到第 m 个人,让他出局:然 ...

  8. POJ-2886 Who Gets the Most Candies?---线段树+约瑟夫环

    题目链接: https://cn.vjudge.net/problem/POJ-2886 题目大意: N个人围成一圈第一个人跳出圈后会告诉你下一个谁跳出来跳出来的人(如果他手上拿的数为正数,从他左边数 ...

  9. "递归"实现"约瑟夫环","汉诺塔"

    一:约瑟夫环问题是由古罗马的史学家约瑟夫提出的,问题描述为:编号为1,2,-.n的n个人按顺时针方向围坐在一张圆桌周围,每个人持有一个密码(正整数),一开始任选一个正整数作为报数上限值m,从第一个人开 ...

  10. 【51nod1073】约瑟夫环1

    题目大意:给定 \(N\) 个人围成一个圈,每隔 \(M\) 个人杀一个,求最后活着的人的编号. 题解:环会涉及模运算,所以先将 \(1 \rightarrow N\) 映射为 \(0 \righta ...

随机推荐

  1. jQuery分页插件pagination的用法

    https://www.zhangxinxu.com/jq/pagination_zh/ 参数: 参数名 描述 参数值 maxentries 总条目数 必选参数,整数 items_per_page 每 ...

  2. Android的Activity的小知识点

    1.android的四种启动模式分别是:standard,singleTop,SingleTask,singleInstance. 我们可以在AndroidMainfest.xml中通过Activit ...

  3. X Macro

    30年前我念大学时从一个朋友那里学来的一个技巧. 它是汇编语言的一个宏,但很容易转换为C语言宏. 我一直在使用它,但有意思的是我还从没在别人的代码中看到过.现在该我把这个小技巧传递下去了. 让我们举个 ...

  4. 面向对象和结构化程序设计的区别X

    面向对象和结构化程序设计的区别 结构化程序的概念首先是从以往编程过程中无限制地使用转移语句而提出的.转移语句可以使程序的控制流程强制性的转向程序的任一处,在传统流程图中,就是用上节我们提到的" ...

  5. hdu1698 Just a hook 线段树区间更新

    题解: 和hdu1166敌兵布阵不同的是 这道题需要区间更新(成段更新). 单点更新不用说了比较简单,区间更新的话,如果每次都更新到底的话,有点费时间. 这里就体现了线段树的另一个重要思想:延迟标记. ...

  6. BZOJ 4229: 选择 LCT_独创方法_边双

    考虑如果两点在一个环中,那么这两点一定可以构出双联通分量. 考虑环和环镶嵌,那么两个环中的点一定都互为双联通分量. 由此,我们想到一个算法: 将删边转为反向加边,用LCT维护图. 当我们连接两个点时, ...

  7. 10、Latent Relational Metric Learning via Memory-based Attention for Collaborative Ranking-----基于记忆注意的潜在关系度量协同排序

    一.摘要: 本文模型 LRML(潜在相关度量学习)是一种新的度量学习方法的推荐.[旨在学习用户和项目之间的相关关系,而不是简单的用户和项目之间的push和pull关系,push和pull主要针对LMN ...

  8. selenium chrome.options禁止加载图片和js

    #新建一个选项卡 from selenium import webdriver options = webdriver.ChromeOptions() #禁止加载图片 prefs = { 'profi ...

  9. W10如何开启LinuxBash及安装Ubuntu

    W10如何开启LinuxBash的功能 1)开启开发人员模式 2)启动部分windows功能 完成后重启系统 然后在cmd中输入bash按命令操作即可使用bash命令 3)下载安装ubuntu lxr ...

  10. React 中的 AJAX 请求:获取数据的方法

    React 中的 AJAX 请求:获取数据的方法 React 只是使用 props 和 state 两处的数据进行组件渲染. 因此,想要使用来自服务端的数据,必须将数据放入组件的 props 或 st ...