代码

import pulp
import numpy as np
from pprint import pprint def transport_problem(costs, x_max, y_max):
row = len(costs)
col = len(costs[0])
prob = pulp.LpProblem('Transportation Problem', sense=pulp.LpMaximize)
var = [[pulp.LpVariable(f'x{i}{j}', lowBound=0, cat=pulp.LpInteger)
for j in range(col)] for i in range(row)]
flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]#定义一个x,x若为列表形式则执行for循环,flatten将多维数组转换为一维数组
prob += pulp.lpDot(flatten(var), costs.flatten())#costs是numpy定义的,有自己的函数
for i in range(row):
prob += (pulp.lpSum(var[i])) <= x_max[i]
for j in range(col):
prob += (pulp.lpSum(var[i][j] for i in range(row)) <= y_max[j])
prob.solve()
return {'objective': pulp.value(prob.objective), 'var': [[pulp.value(var[i][j]) for j in range(col)] for
i in range(row)]} if __name__ == '__main__':
costs = np.array([[500, 550, 630, 1000, 800, 700],
[800, 700, 600, 950, 900, 930],
[1000, 960, 840, 650, 600, 700],
[1200, 1040, 980, 860, 880, 780]])
max_plant = [76, 88, 96, 40]
max_cultivation = [42, 56, 44, 39, 60, 59]
res = transport_problem(costs, max_plant, max_cultivation)
print(f'最大值为{res["objective"]}')
print('各变量的取值为: ')
pprint(res['var'])

最大值为284230.0
各变量的取值为:
[[0.0, 0.0, 6.0, 39.0, 31.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 29.0, 59.0],
[2.0, 56.0, 38.0, 0.0, 0.0, 0.0],
[40.0, 0.0, 0.0, 0.0, 0.0, 0.0]]

基于python的数学建模---运输问题的更多相关文章

  1. 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)

    函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...

  2. Python数学建模-01.新手必读

    Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...

  3. Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评

    新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...

  4. Python小白的数学建模课-19.网络流优化问题

    流在生活中十分常见,例如交通系统中的人流.车流.物流,供水管网中的水流,金融系统中的现金流,网络中的信息流.网络流优化问题是基本的网络优化问题,应用非常广泛. 网络流优化问题最重要的指标是边的成本和容 ...

  5. 【数学建模】线性规划各种问题的Python调包方法

    关键词:Python.调包.线性规划.指派问题.运输问题.pulp.混合整数线性规划(MILP) 注:此文章是线性规划的调包实现,具体步骤原理请搜索具体解法.   本文章的各个问题可能会采用多种调用方 ...

  6. Python数学建模-02.数据导入

    数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...

  7. Python小白的数学建模课-A1.国赛赛题类型分析

    分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...

  8. Python小白的数学建模课-07 选址问题

    选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...

  9. Python小白的数学建模课-09 微分方程模型

    小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...

  10. Python小白的数学建模课-B5. 新冠疫情 SEIR模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...

随机推荐

  1. KingbaseES 的 Lateral 连接

    一.什么是 Lateral 连接 根据文档,它的作用是: LATERAL 关键字可以位于子 SELECT FROM 项之前.这允许子 SELECT 引用 FROM 列表中出现在它之前的 FROM 项的 ...

  2. torch.stack()与torch.cat()

    torch.stack():http://www.45fan.com/article.php?aid=1D8JGDik5G49DE1X torch.stack()个人理解:属于先变形再cat的操作,所 ...

  3. Sync包

    sync同步包 Mutex互斥锁: 能够保证在同一时间段内仅有一个goroutine持有锁,有且仅有一个goroutine访问共享资源,其他申请锁的goroutine将会被阻塞直到锁被释放.然后重新争 ...

  4. NODE 基于express 框架和mongoDB的cookie和session认证 和图片的上传和删除

    源码地址 https://gitee.com/zyqwasd/mongdbSession 本项目的mongodb是本地的mongodb 开启方法可以百度一下 端口是默认的27017 页面效果 1. 注 ...

  5. vscode用户自定义代码中如何表示table空格

    "Print to phpfuntion": { "scope": "php", "prefix": "pfu ...

  6. 迁移阿里云上的ECS操作说明

    背景: 1.公司测试服务器快要到期了,但是续费太贵,就想用另一个阿里云账号下的服务器作为测试服务器. 2.测试服务器原在阿里云账号A下,要迁移到阿里云账号B下 3.该测试服务器有一个系统盘和俩数据盘 ...

  7. 组合总和 II

    组合总和 II 题目介绍 给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates ...

  8. Jpa常用API

    service中执行sql 根据请求参数拼接sql import javax.persistence.Query; import javax.persistence.EntityManager; @A ...

  9. ERP 与 CRM 之间有什么联系?

    ERP与CRM都涉及到客户的管理,在客户信息数据里很大一部分是重合的,可以共用的,即ERP里的客户信息可以为CRM所用,CRM的客户信息,亦可为ERP所用!在关系上可以理解为CRM就是ERP的最前端, ...

  10. P1886 滑动窗口 /【模板】单调队列 方法记录

    原题链接 滑动窗口 /[模板]单调队列 题目描述 有一个长为 \(n\) 的序列 \(a\),以及一个大小为 \(k\) 的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最 ...