题目:最长上升子序列 II

给定一个长度为 N 的数列,求数值严格单调递增的子序列的长度最长是多少。

输入格式

第一行包含整数 N。

第二行包含 N个整数,表示完整序列。

输出格式

输出一个整数,表示最大长度。

数据范围

1≤N≤100000,
−10e9≤数列中的数≤10e9

输入样例:

7

3 1 2 1 8 5 6

输出样例:

4

问题解决

这个问题我用dp+二分法的方法来写。

一、 遍历a[i]将a[i]放入dp数组
1.1构造dp[i]数组:
  dp[i]为长度是i的上升子序列结尾元素。
  i:表示子序列的长度,取值范围是1~len,其中len表示目前最大的子序列长度。
1.2 将a[i]放入dp数组中
  规则为找到某个dp[j],使得a[i]>dp[j]&&a[i]<dp[j+1],
  找到后将dp[j+1]替换为a[i],更新len 判断len是否因dp数组的扩大而变大,len=max(len,j+1)。
...........................................................................................................................................................................................................
二 、在dp[1]和dp[len]之间寻找满足1.2条的位置
2.1 L端起点和r端终点的初始选择
  因为dp[i]的取值范围是1~len所以起始边界设置在两端之外L=0,r=len+1;
2.2 退出二分的条件
  当L+1==r时说明两个指针已经相邻,边界已经找到即可退出循环。
2.3 L端和r端分界线的判定条件
  L端都<a[i],r端都>=a[i],满足l端条件L=mid,否则r=mid。
2.4 采用r
  r即为1.2中的j+1。

我用的是手写二分法,主要参考链接如下:
https://www.bilibili.com/video/BV1d54y1q7k7?from=search&seid=14378360076371462119
大家也可以用upper_bound来取得r值。
3 总结
该程序时间复杂度为O(n*log n),可以解决n=1e5的规模的问题。

程序君‍:

#include<bits/stdc++.h>
using namespace std;
const int N=1e5;
const int inf=1e9;
int main()
{
int a[N],dp[N],n; cin>>n;
for(int i=1;i<=n;i++) scanf("%d",&a[i]); int len=0;
for(int i=1;i<=n;i++)
{
int l=0,r=len+1;
while(l+1!=r)
{
int m=l+r>>1;
if(dp[m]<a[i])
{
l=m;
}
else
{
r=m;
}
}
dp[r]=a[i];
len=max(len,r);
} cout<<len;
return 0;
}

最长上升子序列 II 时间复杂度(nlogn)的更多相关文章

  1. 最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现

    关于最长递增子序列时间复杂度O(n^2)的实现方法在博客http://blog.csdn.net/iniegang/article/details/47379873(最长递增子序列 Java实现)中已 ...

  2. HDU 5748 最长上升子序列的长度nlogn(固定尾部)

    Bellovin Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  3. 最长上升子序列(LIS)n2 nlogn算法解析

    题目描述 给定一个数列,包含N个整数,求这个序列的最长上升子序列. 例如 2 5 3 4 1 7 6 最长上升子序列为 4. 1.O(n2)算法解析 看到这个题,大家的直觉肯定都是要用动态规划来做,那 ...

  4. AcWing 896. 最长上升子序列 II

    #include<iostream> #include<algorithm> #include<vector> using namespace std; int m ...

  5. 最长上升子序列O(nlogn) 要强的T^T(2358)

    题目来源:http://www.fjutacm.com/Problem.jsp?pid=2358 要强的T^T TimeLimit:1000MS  MemoryLimit:65536K 64-bit ...

  6. BZOJ 3173 [Tjoi2013] 最长上升子序列 解题报告

    这个题感觉比较简单,但却比较容易想残.. 我不会用树状数组求这个原排列,于是我只好用线段树...毕竟 Gromah 果弱马. 我们可以直接依次求出原排列的元素,每次找到最小并且最靠右的那个元素,假设这 ...

  7. [ An Ac a Day ^_^ ] HDU 1257 基础dp 最长上升子序列

    最近两天在迎新 看来只能接着水题了…… 新生培训的任务分配 作为一个有担当的学长 自觉去选了动态规划…… 然后我觉得我可以开始水动态规划了…… 今天水一发最长上升子序列…… kuangbin有nlog ...

  8. LIS最长上升子序列O(n^2)与O(nlogn)的算法

    动态规划 最长上升子序列问题(LIS).给定n个整数,按从左到右的顺序选出尽量多的整数,组成一个上升子序列(子序列可以理解为:删除0个或多个数,其他数的顺序不变).例如序列1, 6, 2, 3, 7, ...

  9. (转载)最长递增子序列 O(NlogN)算法

    原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则 ...

  10. 最长递增子序列 O(NlogN)算法

    转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...

随机推荐

  1. SpringBoot yml配置文件中,logging.level报错

    报错 *************************** APPLICATION FAILED TO START *************************** Description: ...

  2. minio API demo

    package mainimport ( "context" "fmt" "github.com/minio/minio-go/v7" &q ...

  3. 【Java 并发003】原理层面:Java并发三特性全解析

    一.前言 不管什么语言,并发的编程都是在高级的部分,因为并发的涉及的知识太广,不单单是操作系统的知识,还有计算机的组成的知识等等.说到底,这些年硬件的不断的发展,但是一直有一个核心的矛盾在:CPU.内 ...

  4. 再见CMS

    观察网站最下方,根据备案号搜到这是个齐博CMS,然后百度就可以搜到齐博CMS漏洞了 然后开始利用 首先尝试了在用户信息修改处进行注入,发现好像想不通了,就在博客界面进行注入 Payload: 获取版本 ...

  5. 【Java EE】Day09 JavaScript基础

    一.JavaScript简介 二.JavaScript语法 三.JavaScript对象

  6. UBOOT 启动流程

    一.概述 uboot 的启动流程在网上有很多大佬记录,但是了对于像我这样的新手就有些困难了,而我也不做 uboot 相关的工作,所以没必去研究代码,这里我特意整理了一下,以流程图的形式展现代码执行的流 ...

  7. PAM8403 3.3V音频功放调试笔记

    做I2S输出用了PT8211(实际上买到的丝印是GH8211), 双声道, LSB格式, 工作正常但是输出功率非常低, 喇叭声音要贴近了才能勉强听到, 所以打算做一个PT8211带功放的I2S模块. ...

  8. 搭建IIS网站后,点击浏览地址,报403错误

    点击左侧的浏览地址,报右侧的错误,可将目录浏览进行启用 双击进去,进行启用即可

  9. 使用命令行运行用例时提示python.exe: Error while finding module specification for 'testcase_1.Test'.....

    文件路径 输入命令 D:\demo>python -m unittest unittest_1/testcase_1.Test结果提示 ModuleNotFoundError: No modul ...

  10. python 之excel文件读取封装

    import os import xlrd PATH = lambda p: os.path.abspath( os.path.join(os.path.dirname(__file__), p) ) ...