【HEOI2014】大工程<虚树>
虚树
我们每天都用心思索着,这究竟是为了什么呢?我想我也不知道,只是觉得如果人不思考问题就很无聊。
- 我觉得虚树不是什么数据结构,就是一种技巧或者工具。它能把树中\(k\)个关键点以\(O(klogk)\)的复杂度变成一棵节点数\(2*k\)以内的树。并且构树的边的信息适用广泛(如最大值,和……)
有两种构树方法:(我这里只讲第一种,第二种男鞋后面看心情)
我们把所有节点按dfn排序,然后相邻两个求的lca加入点中再排序。
用到stack,每个点在加入之前,一直弹栈,直到找到第一个是它祖先的点当做他虚数上的父亲。代码还是挺好写的,就是要求lca.(懒得写st表lca)
然后题目之后就很灵活了,通常是问你一些数论问题。发正她还真是个工具人呢。
大工程
- 题意:【HEOI2014】大工程
- 思路:先构造虚数。然后求解树上最长链、最短链、所有链的和。我就是存Cnt,sum求和(应该大家都是这样),不过最长最短我受了直径的影响有点傻B,存储了最大次大(小),不过也无大碍
- code:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e6+5;
int st[N],tp,In[N],Out[N],Time,fa[N][21],nxt[N<<1],to[N<<1],head[N],dep[N],ecnt,lg[N],mark[N];
ll inf=1e18,s1[N],Mn,Sum,Mx,dp[N],mn1[N],mn2[N],mx1[N],mx2[N],sum[N],cnt[N],len[N];
struct node {int p,dfn;}a[N];
bool cmp(node u,node v) {return u.dfn<v.dfn;}
void add_edge(int u,int v,ll w) {nxt[++ecnt]=head[u];to[ecnt]=v;len[ecnt]=w;head[u]=ecnt;}
void init(int u) {
In[u]=++Time;
for(int i=head[u];i;i=nxt[i]) {
int v=to[i];
if(v==fa[u][0])continue;
fa[v][0]=u,dep[v]=dep[u]+1;
for(int j=1;j<=lg[dep[v]];j++) fa[v][j]=fa[fa[v][j-1]][j-1];
init(v);
}
Out[u]=Time;
}
int Lca(int u,int v) {
if(dep[u]<dep[v]) swap(u,v);
int k=dep[u]-dep[v];
for(int i=0;i<=lg[k];i++) if((1<<i)&k)u=fa[u][i];
if(u==v)return u;
for(int i=lg[dep[u]];i>=0;i--)
if(fa[u][i]!=fa[v][i]) u=fa[u][i],v=fa[v][i];
return fa[u][0];
}
void dfs(int u) {
s1[u]=cnt[u]=mx1[u]=mx2[u]=0;
mn1[u]=mn2[u]=inf;
for(int i=head[u];i;i=nxt[i]) {
int v=to[i];
dfs(v);
cnt[v]+=(mark[v]==1);
ll tmp=s1[v]+cnt[v]*len[i];
// printf("%lld %lld\n",cnt[u],tmp);
Sum+=(cnt[u]+(mark[u]==1))*tmp+cnt[v]*s1[u];
cnt[u]+=cnt[v],s1[u]+=tmp;
tmp=mx1[v]+len[i];
if(mx1[u]<tmp) mx2[u]=mx1[u],mx1[u]=tmp;
else if(mx2[u]<tmp) mx2[u]=tmp;
tmp=mn1[v]+len[i];
if(mn1[u]>tmp) mn2[u]=mn1[u],mn1[u]=tmp;
else if(mn2[u]>tmp) mn2[u]=tmp;
}
if(mark[u]==1) {Mn=min(Mn,mn1[u]);mn1[u]=0;}
else Mn=min(Mn,mn1[u]+mn2[u]);
Mx=max(Mx,mx1[u]+mx2[u]);
}
int main() {
int n,m;
scanf("%d",&n);
lg[1]=0;for(int j=2;j<=n;j++)lg[j]=lg[j>>1]+1;
for(int i=1;i<n;i++) {
int u,v;
scanf("%d%d",&u,&v);
add_edge(u,v,0),add_edge(v,u,0);
}
init(1);
ecnt=0;for(int i=1;i<=n;i++)head[i]=0;
scanf("%d",&m);
while(m--) {
int ct=0,cc; scanf("%d",&cc);
for(int i=1;i<=cc;i++) {
int p; scanf("%d",&p);
a[++ct]=(node){p,In[p]}; mark[p]=1;
}
sort(a+1,a+1+ct,cmp);
for(int i=1;i<ct;i++) {
int c=Lca(a[i].p,a[i+1].p);
if(!mark[c])a[++ct]=(node){c,In[c]},mark[c]=2;
}
sort(a+1,a+1+ct,cmp);
tp=0;
st[++tp]=a[1].p;
for(int i=2;i<=ct;i++) {
int u=a[i].p;
while(tp&&In[u]<In[st[tp]]||In[u]>Out[st[tp]]) tp--;
add_edge(st[tp],u,dep[u]-dep[st[tp]]);
// printf("!%d %d %d\n",st[tp],u,dep[u]-dep[st[tp]]);
st[++tp]=u;
}
Mn=1e18,Mx=Sum=0;
dfs(a[1].p);
printf("%lld %lld %lld\n",Sum,Mn,Mx);
for(int i=1;i<=ct;i++) mark[a[i].p]=head[a[i].p]=0; ecnt=0;
}
return 0;
}
【HEOI2014】大工程<虚树>的更多相关文章
- bzoj 3611: [Heoi2014]大工程 虚树
题目: 国家有一个大工程,要给一个非常大的交通网络里建一些新的通道. 我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上. 在 2 个国家 a,b 之间建一条新通道需要的代价为树上 ...
- luogu P4103 [HEOI2014]大工程 虚树 + 树形 DP
Description 国家有一个大工程,要给一个非常大的交通网络里建一些新的通道. 我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上. 在 2 个国家 a,b 之间建一条新通 ...
- 洛谷P4103 [HEOI2014]大工程(虚树 树形dp)
题意 链接 Sol 虚树. 首先建出虚树,然后直接树形dp就行了. 最大最小值直接维护子树内到该节点的最大值,然后合并两棵子树的时候更新一下答案. 任意两点的路径和可以考虑每条边两边的贡献,\(d[x ...
- bzoj 3611(洛谷 4103) [Heoi2014]大工程——虚树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3611 https://www.luogu.org/problemnew/show/P4103 ...
- BZOJ.3611.[HEOI2014]大工程(虚树 树形DP)
题目链接 要求的和.最大值.最小值好像都可以通过O(n)的树形DP做,总询问点数<=2n. 于是建虚树就可以了.具体DP见DP()函数,维护三个值sum[],mx[],mn[]. sum[]要开 ...
- BZOJ 3611 [Heoi2014]大工程 ——虚树
虚树第二题.... 同BZOJ2286 #include <map> #include <cmath> #include <queue> #include < ...
- bzoj 3611[Heoi2014]大工程 虚树+dp
题意: 给一棵树 每次选 k 个关键点,然后在它们两两之间 新建 C(k,2)条 新通道. 求: 1.这些新通道的代价和 2.这些新通道中代价最小的是多少 3.这些新通道中代价最大的是多少 分析:较常 ...
- [HEOI2014][bzoj3611] 大工程 [虚树+dp]
题面: 传送门 思路: 又是一道虚树入门级的题目,但是这道题的实际难点在于dp 首先,这道题是可以点分治做的,而且因为6s时限随便浪,所以写点分治也不是不可以 但是,dp因为$O\left(n\rig ...
- bzoj 3611 [Heoi2014]大工程(虚树+DP)
3611: [Heoi2014]大工程 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 408 Solved: 190[Submit][Status] ...
随机推荐
- Android优化应用启动速度
一.应用的启动 启动方式 通常来说,在安卓中应用的启动方式分为两种:冷启动和热启动. 1.冷启动:当启动应用时,后台没有该应用的进程,这时系统会重新创建一个新的进程分配给该应用,这个启动方式就是冷启动 ...
- Java 请求转发和重定向的区别以及JavaWeb三大作用域
三大作用域以及转发和重定向 学习总结 1. 转发和重定向 转发 重定向 转发和重定向的区别: 什么时候用转发什么时候用重定向 三大作用域 作用域类型 作用域方法 如何选择作用域 总结 学习总结 1. ...
- 微信小程序HTTP接口请求封装
1.方法封装(新建文件夹util,工具文件,在文件夹下创建request.js文件,用于对方法封装)request.js: var app = getApp(); //项目URL相同部分,减轻代码量, ...
- 前后端分离mockjs以及webpack-dev-server代理
一: 在webpack中使用mockjs mockjs 也就是模拟数据(mock.js模拟的数据可以不跨域) 安装mock新建mock.js var Mock = require('mockjs') ...
- Mybatis模糊查询结果为空的解决方案
写在前面 Mybatis使用模糊查询,查询结果为空的解决方案,我的代码是 select * from sp_user where 1=1 <if test="username!=nul ...
- 【转】shim.ChaincodeStubInterface用法
作为记录 shim.ChaincodeStubInterface用法
- drf视图类总结

- jsp中c:forEach使用
首先需要在jsp中引入<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %> ...
- 第十三届蓝桥杯省赛C/C++ B组
@(第十三届蓝桥杯省赛C/C++B组) A顺子日期 答案是1478 B顺子日期 答案14(如果012算的话) C刷题统计 数据范围1e18,所以不能直接暴力,先取余,再暴力剩下的 #include&l ...
- 2021-ACM-ICPC-济南站 K Search For Mafuyu 【树的遍历与回溯,dfs, 邻接表】
PAT 题目详情 (pintia.cn) 题目 题意描述 n个房间, 有n-1个通道, kanade初始在1,Mafuyu 位置未知,求K到M的最小期望,也就是到每个地方的平均值,注意的是这里的求法, ...