LGP5430题解
新的 \(O(k+\log n)\) 做法。
考虑计算每个猴子对答案的贡献。
打个表:
1 1 2 4 8 16 32 ...
可以看出第 $ i $ 个猴子对答案的贡献是 \(i^k \times 2^{n-i-1}\),特别地,最后一只猴子对答案的贡献是 \(n^k\)。
写成柿子:
\]
\]
我们只需要计算出 \(\sum_{i=1}^{n-1}i^k \times (2^{-1})^i\) 即可。
然后我们发现这个柿子是 CODECHEF qpolysum,然后就做完了。
还是把做法写一遍吧
qpolysum 和本题有不同之处,即 \(i\) 从 \(0\) 开始,不过没啥区别,因为你要减掉的是一个 \(0\)(
\]
在本题中相当于 \(m=2^{-1}\)。
不过这个做法是猜了一个很奇怪的结论,并且做法来自校 OJ 讨论区(
我们猜 \(S(n)=m^n G(n) - G(0)\),其中 \(G(x)\) 是一个不超过 \(k\) 次的多项式。
证明可以看这个 blog 我才不告诉你是我看不懂
然后差分一下:
\]
\]
设 \(G(0)=x\),那么我们在 \(n\) 为任何值的时候用 \(x\) 表示 \(G(n)\)。
因为这个多项式的次数最高为 \(k\),而对一个 \(k\) 次多项式差分 \(k+1\) 次后为 \(0\),所以我们把 \(G(x)\) 差分 \(k+1\) 次后得到:
\]
我们可以用 \(x\) 表示 \(G(0) \sim G(k+1)\),然后解一个一元一次方程即可得到 \(x\),带入可得到 \(G(1) \sim G(k+1)\) 的值。
现在我们可以使用拉格朗日插值计算 \(G(n)\) 了,答案就是 \(m^nG(n)-G(0)\)。
\(i^k\) 可以使用线性筛,所以复杂度是 \(O(k+\log n)\)。
什么?你卡我空间?\(10\) 个数组太多了???
实际上可以缩成 \(7\) 个 \(\rm int\) 数组和 \(1\) 个 \(\rm bool\) 数组。
我的线性筛使用的是直接纪录最小质因数而非纪录是否为质数,可以改成后者。
然后就是 \(q\) 和 \(p\) 数组在使用的时候,\(x\) 和 \(y\) 数组已经不会使用了,所以直接使用 \(x\) 和 \(y\) 代替 \(q\) 和 \(p\) 即可。
code:
#include<cstdio>
#include<cctype>
const int M=2e7+5,mod=1e9+7;
int k,n1,n2,top,x[M],y[M],idk[M],pri[M],fac[M],ifac[M];bool zhi[M];
int G[M];
inline void read(){
char s;long long t1,t2;
while(isdigit(s=getchar())){
t1=n1*10ll+(s^48);n1=t1>=mod?t1%mod:t1;
t2=n2*10ll+(s^48);n2=t2>=mod-1?t2%(mod-1):t2;
}
}
inline int Add(const int&a,const int&b){
return a+b>=mod?a+b-mod:a+b;
}
inline int Del(const int&a,const int&b){
return b>a?a-b+mod:a-b;
}
inline int C(const int&n,const int&m){
return 1ll*fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}
inline int pow(int a,int b){
int ans=1;
for(;b;b>>=1,a=1ll*a*a%mod)if(b&1)ans=1ll*ans*a%mod;
return ans;
}
inline void sieve(const int&M){
register int i,j,x;idk[1]=1;
for(i=2;i<=M;++i){
if(!zhi[i])pri[++top]=i,idk[i]=pow(i,k);
for(j=1;j<=top&&(x=i*pri[j])<=M;++j){
idk[x]=1ll*idk[i]*idk[pri[j]]%mod;zhi[x]=true;
if(!(i%pri[j]))break;
}
}
}
inline int Inter(const int&n){
register int i,tmp,ans=0;
x[0]=y[k+2]=1;
for(i=1;i<=k+1;++i)x[i]=1ll*x[i-1]*Del(n,i)%mod;
for(i=k+1;i>=1;--i)y[i]=1ll*y[i+1]*Del(n,i)%mod;
for(i=1;i<=k+1;++i){
if(k+1-i&1)ans=Del(ans,1ll*1ll*x[i-1]*y[i+1]%mod*G[i]%mod*ifac[i-1]%mod*ifac[k+1-i]%mod);
else ans=Add(ans,1ll*1ll*x[i-1]*y[i+1]%mod*G[i]%mod*ifac[i-1]%mod*ifac[k+1-i]%mod);
}
return ans;
}
signed main(){
register int i,X=0,Y=0;
fac[0]=fac[1]=ifac[0]=ifac[1]=1;read();scanf("%d",&k);sieve(k+1);x[0]=1;y[0]=0;
for(i=1;i<=k+1;++i)x[i]=Add(x[i-1],x[i-1]),y[i]=Add(y[i-1],idk[i-1]),y[i]=Add(y[i],y[i]);
for(i=2;i<=k+1;++i)fac[i]=1ll*fac[i-1]*i%mod,ifac[i]=1ll*(mod-mod/i)*ifac[mod%i]%mod;
for(i=2;i<=k+1;++i)ifac[i]=1ll*ifac[i-1]*ifac[i]%mod;
for(i=0;i<=k+1;++i){
if(i&1){
X=Add(X,1ll*C(k+1,i)*x[k+1-i]%mod);
Y=Add(Y,1ll*C(k+1,i)*y[k+1-i]%mod);
}
else{
X=Del(X,1ll*C(k+1,i)*x[k+1-i]%mod);
Y=Del(Y,1ll*C(k+1,i)*y[k+1-i]%mod);
}
}
G[0]=mod-1ll*Y*pow(X,mod-2)%mod;
for(i=1;i<=k+1;++i)G[i]=Add(1ll*x[i]*G[0]%mod,y[i]);
printf("%d",Add(1ll*Del(1ll*pow(500000004,n2)*Inter(n1)%mod,G[0])*pow(2,n2-1)%mod,pow(n1,k)));
}
LGP5430题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- 关于viewControllers之间的传值方式
AViewController----Push----BViewController 1.属性 AViewController---pop----BViewController 1.代理 2.通知 ...
- 配置samba共享,实现/www目录共享
一.samba服务器 1.安装samba包 # yum -y install samba 2.创建用户组 # groupadd -r admins # useradd -s /sbin/nologin ...
- B快速导航
GETTING STARTED If you are new to Selenium, we have a few resources that can help you get up to spee ...
- Oracle - Trunc() 函数截取日期&截取数值
Oracle TRUNC函数可以截取数字和日期类型:截取日期:select to_char(sysdate,'yyyy-mm-dd hh24:mi:ss') from dual; --显示当前时间 s ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- rabbit-vue3-ts-小兔鲜儿2022新版-系列开篇
rabbit-vue3-ts-小兔鲜儿2022新版 项目使用 Vite + Vue3 + TypeScript + Pinia + VueRouter@4 进行开发. 代码检查和格式化为:ESlint ...
- java 人机猜拳 游戏
人机猜拳-游戏 掌握类和对象的使用,掌握方法的定义和返回值,掌握封装的运用 定义一个电脑类:Computer.java 点击查看[Computer.java]代码 /** * @Title: 电脑类 ...
- scrapy的安装与环境配置
本人系统是win10 64位电脑 ide使用的是pycharm 此次学习内容源自慕课网大壮老师的<Python最火爬虫框架scrapy入门> 由于大壮老师使用的linux 所以有些东西需要 ...
- JsonResponse类的使用、form表单上传文件补充、CBV和FBV、HTML的模板语法之传值与过滤器
昨日内容回顾 Django请求生命周期 # 1.浏览器发起请求 到达Django的socket服务端(web服务网关接口) 01 wsgiref 02 uwsgi + nginx 03 WSGI协议 ...
- 主流的商业智能BI工具推荐,学会数据分析没难度
伴随着大数据概念的深入企业越来越重视大数据,商业智能BI工具已经成为许多企业数据分析的首选.也许有些小伙伴对商业智能BI工具还是有些陌生,在了解商业智能BI工具之前,先来了解一下什么是商业智能. 百度 ...