【Redis场景3】缓存穿透、击穿问题
场景问题及原因
缓存穿透:
原因:客户端请求的数据在缓存和数据库中不存在,这样缓存永远不会生效,请求全部打入数据库,造成数据库连接异常。
解决思路:
缓存空对象
- 对于不存在的数据也在Redis建立缓存,值为空,并设置一个较短的TTL时间
- 问题:实现简单,维护方便,但短期的数据不一致问题
缓存雪崩:
原因:在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。
解决思路:给不同的Key的TTL添加随机值(简单),给缓存业务添加降级限流策略(复杂),给业务添加多级缓存(复杂)
缓存击穿(热点Key):
前提条件:热点Key&在某一时段被高并发访问&缓存重建耗时较长
原因:热点key突然过期,因为重建耗时长,在这段时间内大量请求落到数据库,带来巨大冲击
解决思路:
互斥锁
- 给缓存重建过程加锁,确保重建过程只有一个线程执行,其它线程等待
- 问题:线程阻塞,导致性能下降且有死锁风险
逻辑过期
- 热点key缓存永不过期,而是设置一个逻辑过期时间,查询到数据时通过对逻辑过期时间判断,来决定是否需要重建缓存;重建缓存也通过互斥锁保证单线程执行,但是重建缓存利用独立线程异步执行,其它线程无需等待,直接查询到的旧数据即可
- 问题:不保证一致性,有额外内存消耗且实现复杂
场景问题实践解决
完整代码地址:https://github.com/xbhog/hm-dianping
分支:20221221-xbhog-cacheBrenkdown
分支:20230110-xbhog-Cache_Penetration_Avalance
缓存穿透:

代码实现:
public Shop queryWithPassThrough(Long id){
//从redis查询商铺信息
String shopInfo = stringRedisTemplate.opsForValue().get(SHOP_CACHE_KEY + id);
//命中缓存,返回店铺信息
if(StrUtil.isNotBlank(shopInfo)){
return JSONUtil.toBean(shopInfo, Shop.class);
}
//redis既没有key的缓存,但查出来信息不为null,则为空字符串
if(shopInfo != null){
return null;
}
//未命中缓存
Shop shop = getById(id);
if(Objects.isNull(shop)){
//将null添加至缓存,过期时间减少
stringRedisTemplate.opsForValue().set(SHOP_CACHE_KEY+id,"",5L, TimeUnit.MINUTES);
return null;
}
//对象转字符串
stringRedisTemplate.opsForValue().set(SHOP_CACHE_KEY+id,JSONUtil.toJsonStr(shop),30L, TimeUnit.MINUTES);
return shop;
}
上述流程图和代码非常清晰,由于缓存雪崩简单实现(复杂实践不会)增加随机TTL值,缓存穿透和缓存雪崩不过多解释。
缓存击穿:
缓存击穿逻辑分析:

首先线程1在查询缓存时未命中,然后进行查询数据库并重建缓存。注意上述缓存击穿发生的条件,被高并发访问&缓存重建耗时较长;
由于缓存重建耗时较长,在这时间穿插线程2,3,4进入;那么这些线程都不能从缓存中查询到数据,同一时间去访问数据库,同时的去执行数据库操作代码,对数据库访问压力过大。
互斥锁:
解决方式:加锁;****可以采用**tryLock方法 + double check**来解决这样的问题

在线程2执行的时候,由于线程1加锁在重建缓存,所以线程2被阻塞,休眠等待线程1执行完成后查询缓存。由此造成在重建缓存的时候阻塞进程,效率下降且有死锁的风险。
private Shop queryWithMutex(Long id) {
//从redis查询商铺信息
String shopInfo = stringRedisTemplate.opsForValue().get(SHOP_CACHE_KEY + id);
//命中缓存,返回店铺信息
if(StrUtil.isNotBlank(shopInfo)){
return JSONUtil.toBean(shopInfo, Shop.class);
}
//redis既没有key的缓存,但查出来信息不为null,则为空字符串
if(shopInfo != null){
return null;
}
//实现缓存重建
String lockKey = "lock:shop:"+id;
Shop shop = null;
try {
Boolean aBoolean = tryLock(lockKey);
if(!aBoolean){
//加锁失败,休眠
Thread.sleep(50);
//递归等待
return queryWithMutex(id);
}
//获取锁成功应该再次检测redis缓存是否还存在,做doubleCheck,如果存在则无需重建缓存。
synchronized (this){
//从redis查询商铺信息
String shopInfoTwo = stringRedisTemplate.opsForValue().get(SHOP_CACHE_KEY + id);
//命中缓存,返回店铺信息
if(StrUtil.isNotBlank(shopInfoTwo)){
return JSONUtil.toBean(shopInfoTwo, Shop.class);
}
//redis既没有key的缓存,但查出来信息不为null,则为“”
if(shopInfoTwo != null){
return null;
}
//未命中缓存
shop = getById(id);
// 5.不存在,返回错误
if(Objects.isNull(shop)){
//将null添加至缓存,过期时间减少
stringRedisTemplate.opsForValue().set(SHOP_CACHE_KEY+id,"",5L, TimeUnit.MINUTES);
return null;
}
//模拟重建的延时
Thread.sleep(200);
//对象转字符串
stringRedisTemplate.opsForValue().set(SHOP_CACHE_KEY+id,JSONUtil.toJsonStr(shop),30L, TimeUnit.MINUTES);
}
} catch (InterruptedException e) {
throw new RuntimeException(e);
} finally {
unLock(lockKey);
}
return shop;
}
在获取锁失败时,证明已有线程在重建缓存,使当前线程休眠并重试(递归实现)。
代码中需要注意的是synchronized关键字的使用,在获取到锁的时候,在判断下缓存是否存在(失效)double-check,该关键字锁的是当前对象。在其关键字{}中是同步处理。
推荐博客:https://blog.csdn.net/u013142781/article/details/51697672
然后进行测试代码,进行压力测试(jmeter),首先去除缓存中的值,模拟缓存失效。
设置1000个线程,多线程执行间隔5s。


所有的请求都是成功的,其qps大约在200,其吞吐量还是比较可观的。然后看下缓存是否成功(只查询一次数据库);

逻辑过期:
思路分析:
当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。

封装数据:这里我们采用新建实体类来实现
/**
* @author xbhog
* @describe:
* @date 2023/1/15
*/
@Data
public class RedisData {
private LocalDateTime expireTime;
private Object data;
}
使得过期时间和数据有关联关系,这里的数据类型是Object,方便后续不同类型的封装。
public Shop queryWithLogicalExpire( Long id ) {
String key = CACHE_SHOP_KEY + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isBlank(json)) {
// 3.存在,直接返回
return null;
}
// 4.命中,需要先把json反序列化为对象
RedisData redisData = JSONUtil.toBean(json, RedisData.class);
Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
LocalDateTime expireTime = redisData.getExpireTime();
// 5.判断是否过期
if(expireTime.isAfter(LocalDateTime.now())) {
// 5.1.未过期,直接返回店铺信息
return shop;
}
// 5.2.已过期,需要缓存重建
// 6.缓存重建
// 6.1.获取互斥锁
String lockKey = LOCK_SHOP_KEY + id;
boolean isLock = tryLock(lockKey);
// 6.2.判断是否获取锁成功
if (isLock){
exectorPool().execute(() -> {
try {
//重建缓存
this.saveShop2Redis(id, 20L);
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
unLock(lockKey);
}
});
}
// 6.4.返回过期的商铺信息
return shop;
}
当前的执行流程跟互斥锁基本相同,需要注意的是,在获取锁成功后,我们将缓存重建放到线程池中执行,来异步实现。
线程池代码:
/**
* 线程池的创建
* @return
*/
private static ThreadPoolExecutor exectorPool() {
ThreadPoolExecutor executor = new ThreadPoolExecutor(
5,
//根据自己的处理器数量+1
Runtime.getRuntime().availableProcessors()+1,
2L,
TimeUnit.SECONDS,
new LinkedBlockingDeque<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.AbortPolicy());
return executor;
}
缓存重建代码:
/**
* 重建缓存
* @param id 重建ID
* @param l 过期时间
*/
public void saveShop2Redis(Long id, long l) {
//查询店铺信息
Shop shop = getById(id);
//封装逻辑过期时间
RedisData redisData = new RedisData();
redisData.setData(shop);
redisData.setExpireTime(LocalDateTime.now().plusSeconds(l));
stringRedisTemplate.opsForValue().set(CACHE_SHOP_KEY+id,JSONUtil.toJsonStr(redisData));
}
测试条件:100线程,1s线程间隔时间,缓存失效时间10s。
测试环境:缓存中存在对应的数据,并且在缓存快失效之前修改数据库中的数据,造成缓存与数据库不一致,通过执行压测,来查看相关线程返回的数据情况。


从上述两张图中可以看到,在前几个线程执行过程中店铺name为102,当执行时间从19-20的时候店铺name发生变化为105,满足逻辑过期异步执行缓存重建的需求.
【Redis场景3】缓存穿透、击穿问题的更多相关文章
- NoSQL & Redis 介绍、缓存穿透 & 击穿 & 雪崩
1. NoSql 简介 2. Redis 简介 2.1 Redis 的起源 2.2 缓存过期 & 缓存淘汰 3. 缓存异常 1)缓存穿透 2)缓存击穿 3)缓存雪崩 4)总结 1. NoSQL ...
- Redis中几个简单的概念:缓存穿透/击穿/雪崩,别再被吓唬了
Redis中几个“看似”高大上的概念,经常有人提到,某些好事者喜欢死扣概念,实战没多少,嘴巴里冒出来的全是高大上的名词,个人一向鄙视概念党,呵呵! 其实这几个概念:缓存穿透/缓存击穿/缓存雪崩,有一个 ...
- Redis系列(八)--缓存穿透、雪崩、更新策略
1.缓存更新策略 1.LRU/LFU/FIFO算法剔除:例如maxmemory-policy 2.超时剔除,过期时间expire,对于一些用户可以容忍延时更新的数据,例如文章简介内容改了几个字 3.主 ...
- Redis缓存穿透、缓存击穿以及缓存雪崩
作为一个内存数据库,redis也总是免不了有各种各样的问题,这篇文章主要是针对其中三个问题进行讲解:缓存穿透.缓存击穿和缓存雪崩.并给出一些解决方案.这三个问题是基本问题也是面试常问问题. 这篇文章我 ...
- Redis缓存雪崩,缓存穿透,热点key解决方案和分析
缓存穿透 缓存系统,按照KEY去查询VALUE,当KEY对应的VALUE一定不存在的时候并对KEY并发请求量很大的时候,就会对后端造成很大的压力. (查询一个必然不存在的数据.比如文章表,查询一个不存 ...
- 8.了解什么是 redis 的雪崩、穿透和击穿?redis 崩溃之后会怎么样?系统该如何应对这种情况?如何处理 redis 的穿透?
作者:中华石杉 面试题 了解什么是 redis 的雪崩.穿透和击穿?redis 崩溃之后会怎么样?系统该如何应对这种情况?如何处理 redis 的穿透? 面试官心理分析 其实这是问到缓存必问的,因为缓 ...
- 什么是 redis 的雪崩、穿透和击穿?
缓存雪崩 对于系统 A,假设每天高峰期每秒 5000 个请求,本来缓存在高峰期可以扛住每秒 4000 个请求,但是缓存机器意外发生了全盘宕机.缓存挂了,此时 1 秒 5000 个请求全部落数据库,数据 ...
- Java高并发缓存架构,缓存雪崩、缓存穿透之谜
面试题 了解什么是 redis 的雪崩.穿透和击穿?redis 崩溃之后会怎么样?系统该如何应对这种情况?如何处理 redis 的穿透? 面试官心理分析 其实这是问到缓存必问的,因为缓存雪崩和穿透,是 ...
- Redis实现分布式缓存
Redis 分布式缓存实现(一) 1. 什么是缓存(Cache) 定义:就是计算机内存中的一段数据: 2. 内存中数据特点 a. 读写快 b. 断电立即丢失 3. 缓存解决了什么问题? a. 提 ...
- Redis缓存雪崩、缓存穿透、缓存击穿、缓存降级、缓存预热、缓存更新
Redis缓存能够有效地加速应用的读写速度,就DB来说,Redis成绩已经很惊人了,且不说memcachedb和Tokyo Cabinet之流,就说原版的memcached,速度似乎也只能达到这个级别 ...
随机推荐
- 2022UUCTF--WEB
websign 无法右键 禁用js后 看源码 ez_rce -- 闭合 源码,禁用的东西挺多的 仔细发现 ? <> `没有禁用,闭合标签反引号执行命令 ## 放弃把,小伙子,你真的不会RC ...
- 学习ASP.NET Core Blazor编程系列十——路由(上)
学习ASP.NET Core Blazor编程系列一--综述 学习ASP.NET Core Blazor编程系列二--第一个Blazor应用程序(上) 学习ASP.NET Core Blazor编程系 ...
- 部署owncloud连接ladp迁移数据
定期 清理日志 echo '' > /var/www/html/data/owncloud.log 查询 用户 的 ldap 语句 (|(objectclass=inetOrgPerson)(o ...
- 8.drf-序列化器
在序列化类中,如果想使用request,则可以通过self.context['request']获取 序列化器的主要由两大功能 - 对请求的数据进行校验(底层调用的是Django的Form和Model ...
- Java:ArrayList的基本使用(学习笔记)
集合和数组的对比(为什么要有集合) 分为俩点 1. 长度:数组的长度是固定的,集合的长度是可变的. 2. 存储类型: 数组:可以存储基本数据类型,引用数据类型. 集合:只能存储引用数据类型. 小t ...
- Arch Linux 的安装
Arch Linux 的安装 作者:Grey 原文地址: 博客园:Arch Linux 的安装 CSDN:Arch Linux 的安装 版本 Arch Linux:2022.07.01 VMware ...
- 并发bug之源(二)-有序性
什么是有序性? 简单来说,假设你写了下面的程序: int a = 1; int b = 2; System.out.println(a); System.out.println(b); 但经过编译器/ ...
- 关于deepin-wine或wine设置PATH环境变量的方法
前言 更改wine中PATH变量主要是为了能在 cmd输入一些命令而已,这里你可能会问怎么用cmd? deepin-wine cmd 这样就进入了cmd,而设置PATH 环境变量不能像windows一 ...
- 谈谈我的「数字文具盒」 - NextCloud
接下来两篇主要谈论 Nextcloud 和 Obsidian,因为篇幅较长,所以单出罗列出来.本文主要介绍 Nextcloud 以及使用中的技巧和心得体会. Nextcloud Nextcloud 是 ...
- day31-JQuery04
JQuery04 6.jQuery的DOM操作02 6.9常用遍历节点方法 取得匹配元素的所有子元素组成的集合:children(),该方法只考虑子元素而不考虑任何后代元素 取得匹配元素后面的同辈元素 ...