KMP 算法求解字符串匹配的过程中 \(next\) 数组有着繁多的应用,主要是可以帮我们求 border。

然而用 \(s\) 串匹配 \(t\) 串产生的 \(f\) 数组应用相对较少。

\(f\) 数组的实际意义就是与当前考虑的 \(t\) 串前缀的某个后缀相同的长度最大的 \(s\) 串前缀。所有与 \(t\) 串该前缀的后缀匹配的 \(s\) 串前缀可以通过这个前缀跳 border 得来。

那么我们回忆 LCP 的暴力求法:从两个起始位置 \(i,j\) 暴力匹配,找到第一个 \(k\) 满足 \(s_{i+k}\neq s_{j+k}\),\(k\) 就是答案。

现在如果对于一个跟当前串 \(t[1,i]\) 后缀匹配的 \(s\) 串前缀 \(j\) 满足 \(s_{j+1}\neq t_{i+1}\),那么显然有 \(z_{i-j+1}=j\)。

暴力跳所有的匹配的 \(s\) 串前缀复杂度肯定无法接受,但我们发现我们只需要找到所有 \(s_{j+1}\neq t_{i+1}\) 的匹配前缀即可。而由于每个位置的 LCP 只会在它失配的位置处计算一次,所以如果能快速找到这些前缀均摊下来就是 \(O(n)\) 的。

具体地,跟动态 border 的维护方式很类似,我们只需要在 \(nxt\) 树上预处理跳父亲跳到的第一个后继字符不同的位置。这个预处理可以边求 \(nxt\) 边做,只需要一遍循环就搞定了。代码还是比较好写的。

#include <cstdio>
#include <cstring>
using namespace std;
const int N=20000003;
typedef long long ll;
char t[N],s[N];
int n,m;
int nxt[N],f[N],z[N],w[N];
int main(){
scanf("%s",t+1);m=strlen(t+1);
scanf("%s",s+1);n=strlen(s+1);s[n+1]='#';
for(int i=2,j=0;i<=n;++i){
while(j&&s[j+1]!=s[i]) j=nxt[j];
if(s[j+1]==s[i]) ++j;
nxt[i]=j;
if(s[i+1]==s[j+1]) f[i]=f[j];
else f[i]=j;
int p=j;
while(p){
if(s[p+1]!=s[i+1]) z[i-p+1]=p,p=nxt[p];
else p=f[p];
}
}
z[1]=n;
for(int i=1,j=0;i<=m;++i){
while(j&&s[j+1]!=t[i]) j=nxt[j];
if(s[j+1]==t[i]) ++j;
int p=j;
while(p){
if(s[p+1]!=t[i+1]) w[i-p+1]=p,p=nxt[p];
else p=f[p];
}
}
ll valz=0,valw=0;
for(int i=1;i<=n;++i) valz^=(ll)i*(z[i]+1);
for(int i=1;i<=m;++i) valw^=(ll)i*(w[i]+1);
printf("%lld\n%lld\n",valz,valw);
return 0;
}

如何用 KMP 偏序 Z 函数的更多相关文章

  1. KMP 与 Z 函数

    \(\text{By DaiRuiChen007}\) 一.KMP 算法 I. 问题描述 在文本串 \(S\) 中找到模式串 \(T\) 的所有出现,其中 \(|S|=n,|T|=m\) II. 前置 ...

  2. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  3. luogu P5410 模板 扩展 KMP Z函数 模板

    LINK:P5410 模板 扩展 KMP Z 函数 画了10min学习了一下. 不算很难 思想就是利用前面的最长匹配来更新后面的东西. 复杂度是线性的 如果不要求线性可能直接上SA更舒服一点? 不管了 ...

  4. KMP&Z函数详解

    KMP 一些简单的定义: 真前缀:不是整个字符串的前缀 真后缀:不是整个字符串的后缀 当然不可能这么简单的,来个重要的定义 前缀函数: 给定一个长度为\(n\)的字符串\(s\),其 \(前缀函数\) ...

  5. 前缀函数与Z函数介绍

    字符串算法果然玄学=_= 参考资料: OI Wiki:前缀函数与KMP算法 OI Wiki:Z函数(扩展KMP) 0. 约定 字符串的下标从 \(0\) 开始.\(|s|\) 表示字符串 \(s\) ...

  6. exkmp(Z函数) 笔记

    exkmp 用于求解这样的问题: 求文本串 \(T\) 的每一个后缀与模式串 \(M\) 的匹配长度(即最长公共前缀长度).特别的,取 \(M=T\),得到的这个长度被称为 \(Z\) 函数.&quo ...

  7. Atcoder Regular Contest 058 D - 文字列大好きいろはちゃん / Iroha Loves Strings(单调栈+Z 函数)

    洛谷题面传送门 & Atcoder 题面传送门 神仙题. mol 一发现场(bushi)独立切掉此题的 ycx %%%%%%% 首先咱们可以想到一个非常 naive 的 DP,\(dp_{i, ...

  8. Z 函数

    简单记一下,避免忘记. z 函数 对于字符串 \(S\),我们将 \(z(i)\) 定义为从 \(i\) 开始的后缀与 \(S\) 的最长公共前缀的长度. \(O(n)\) 求出 z 函数 我们添加一 ...

  9. KMP算法-next函数求解

    KMP函数求解:一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为KMP算法.KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串 ...

  10. 自动化测试(三)如何用python写一个函数,这个函数的功能是,传入一个数字,产生N条邮箱,产生的邮箱不能重复。

    写一个函数,这个函数的功能是,传入一个数字,产生N条邮箱,产生的邮箱不能重复.邮箱前面的长度是6-12之间,产生的邮箱必须包含大写字母.小写字母.数字和特殊字符 和上一期一样 代码中间有段比较混沌 有 ...

随机推荐

  1. 6-SSRF漏洞

    1.SSRF漏洞介绍 SSRF是一种由攻击者构造请求,由服务端发起请求的安全漏洞.一般情况下,ssrf攻击的目标是外网无法访问的内部系统. 2.SSRF原理 Ssrf的形成大多是由于服务端提供了从其他 ...

  2. WPF中的DataGrid支持Excell粘贴数据

    其中XMAL文件中的表格样式: <DataGrid x:Name="DataListView" AutoGenerateColumns="False" H ...

  3. mybatis-plus自动填充踩坑

    学习使用mybatis-plus的自动填充功能,对create_time和update_time做一个自动填充,期间碰到了一些问题,记录一下问题和相关代码 在实体类字段上增加注解@TableField ...

  4. asyncio基础用法

    说明:需要Python 3.7+ 1.并发运行两个coroutine,写法一: 用Task import asyncio import time async def say_after(delay, ...

  5. 保姆级本地maven安装配置步骤【Windows】

    一.前期准备 1.首先需要安装并配置好本地JDK(WIN+R输入cmd,输入java -version如下图) 2.下载maven到本地(链接Maven – Download Apache Maven ...

  6. 2022年8月学科能力综合测试(TACA)试题解答 Mathemaitca练习

    目录 试题地址 1 4 5 10 13 你让我猜我肯定这么猜 试题地址 https://k.sina.com.cn/article_2897328623_acb1b9ef019011qen.html ...

  7. 【微信网页授权】SpringBoot+uniapp实现网页授权获取用户基本信息

    前言 缘由 起因于本狗上一个项目本打算采用微信公众号网页授权登录做用户鉴权,但最终因公众号是未认证的订阅号,无权限获取用户信息,所以改变思路,采用登录注册方式实现用户区分.但在开发中,学习了微信网页授 ...

  8. Spring框架中都用到了哪些设计模式 ?

    1.简单工厂模式 简单工厂模式的本质就是一个工厂类根据传入的参数,动态的决定实例化哪个类.Spring 中的 BeanFactory 就是简单工厂模式的体现,根据传入一个唯一的标识来获得 bean 对 ...

  9. Windows的压缩文件夹(zip/cab)

    https://weibo.com/1114096665/DtHXgvnva #windows10# 硬要把zip.cab文件当文件夹,不爽怎么解决? 删除注册表 "HKEY_CLASSES ...

  10. 聊聊Spring扩展点BeanPostProcessor和BeanFactoryPostProcessor

    介绍 今天聊一聊spring中很重要的两个扩展点BeanPostProcessor和BeanFactoryPostProcessor,spring之所以如次强大,是因为它提供了丰富的功能给我们使用,但 ...