KMP 算法求解字符串匹配的过程中 \(next\) 数组有着繁多的应用,主要是可以帮我们求 border。

然而用 \(s\) 串匹配 \(t\) 串产生的 \(f\) 数组应用相对较少。

\(f\) 数组的实际意义就是与当前考虑的 \(t\) 串前缀的某个后缀相同的长度最大的 \(s\) 串前缀。所有与 \(t\) 串该前缀的后缀匹配的 \(s\) 串前缀可以通过这个前缀跳 border 得来。

那么我们回忆 LCP 的暴力求法:从两个起始位置 \(i,j\) 暴力匹配,找到第一个 \(k\) 满足 \(s_{i+k}\neq s_{j+k}\),\(k\) 就是答案。

现在如果对于一个跟当前串 \(t[1,i]\) 后缀匹配的 \(s\) 串前缀 \(j\) 满足 \(s_{j+1}\neq t_{i+1}\),那么显然有 \(z_{i-j+1}=j\)。

暴力跳所有的匹配的 \(s\) 串前缀复杂度肯定无法接受,但我们发现我们只需要找到所有 \(s_{j+1}\neq t_{i+1}\) 的匹配前缀即可。而由于每个位置的 LCP 只会在它失配的位置处计算一次,所以如果能快速找到这些前缀均摊下来就是 \(O(n)\) 的。

具体地,跟动态 border 的维护方式很类似,我们只需要在 \(nxt\) 树上预处理跳父亲跳到的第一个后继字符不同的位置。这个预处理可以边求 \(nxt\) 边做,只需要一遍循环就搞定了。代码还是比较好写的。

#include <cstdio>
#include <cstring>
using namespace std;
const int N=20000003;
typedef long long ll;
char t[N],s[N];
int n,m;
int nxt[N],f[N],z[N],w[N];
int main(){
scanf("%s",t+1);m=strlen(t+1);
scanf("%s",s+1);n=strlen(s+1);s[n+1]='#';
for(int i=2,j=0;i<=n;++i){
while(j&&s[j+1]!=s[i]) j=nxt[j];
if(s[j+1]==s[i]) ++j;
nxt[i]=j;
if(s[i+1]==s[j+1]) f[i]=f[j];
else f[i]=j;
int p=j;
while(p){
if(s[p+1]!=s[i+1]) z[i-p+1]=p,p=nxt[p];
else p=f[p];
}
}
z[1]=n;
for(int i=1,j=0;i<=m;++i){
while(j&&s[j+1]!=t[i]) j=nxt[j];
if(s[j+1]==t[i]) ++j;
int p=j;
while(p){
if(s[p+1]!=t[i+1]) w[i-p+1]=p,p=nxt[p];
else p=f[p];
}
}
ll valz=0,valw=0;
for(int i=1;i<=n;++i) valz^=(ll)i*(z[i]+1);
for(int i=1;i<=m;++i) valw^=(ll)i*(w[i]+1);
printf("%lld\n%lld\n",valz,valw);
return 0;
}

如何用 KMP 偏序 Z 函数的更多相关文章

  1. KMP 与 Z 函数

    \(\text{By DaiRuiChen007}\) 一.KMP 算法 I. 问题描述 在文本串 \(S\) 中找到模式串 \(T\) 的所有出现,其中 \(|S|=n,|T|=m\) II. 前置 ...

  2. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  3. luogu P5410 模板 扩展 KMP Z函数 模板

    LINK:P5410 模板 扩展 KMP Z 函数 画了10min学习了一下. 不算很难 思想就是利用前面的最长匹配来更新后面的东西. 复杂度是线性的 如果不要求线性可能直接上SA更舒服一点? 不管了 ...

  4. KMP&Z函数详解

    KMP 一些简单的定义: 真前缀:不是整个字符串的前缀 真后缀:不是整个字符串的后缀 当然不可能这么简单的,来个重要的定义 前缀函数: 给定一个长度为\(n\)的字符串\(s\),其 \(前缀函数\) ...

  5. 前缀函数与Z函数介绍

    字符串算法果然玄学=_= 参考资料: OI Wiki:前缀函数与KMP算法 OI Wiki:Z函数(扩展KMP) 0. 约定 字符串的下标从 \(0\) 开始.\(|s|\) 表示字符串 \(s\) ...

  6. exkmp(Z函数) 笔记

    exkmp 用于求解这样的问题: 求文本串 \(T\) 的每一个后缀与模式串 \(M\) 的匹配长度(即最长公共前缀长度).特别的,取 \(M=T\),得到的这个长度被称为 \(Z\) 函数.&quo ...

  7. Atcoder Regular Contest 058 D - 文字列大好きいろはちゃん / Iroha Loves Strings(单调栈+Z 函数)

    洛谷题面传送门 & Atcoder 题面传送门 神仙题. mol 一发现场(bushi)独立切掉此题的 ycx %%%%%%% 首先咱们可以想到一个非常 naive 的 DP,\(dp_{i, ...

  8. Z 函数

    简单记一下,避免忘记. z 函数 对于字符串 \(S\),我们将 \(z(i)\) 定义为从 \(i\) 开始的后缀与 \(S\) 的最长公共前缀的长度. \(O(n)\) 求出 z 函数 我们添加一 ...

  9. KMP算法-next函数求解

    KMP函数求解:一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为KMP算法.KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串 ...

  10. 自动化测试(三)如何用python写一个函数,这个函数的功能是,传入一个数字,产生N条邮箱,产生的邮箱不能重复。

    写一个函数,这个函数的功能是,传入一个数字,产生N条邮箱,产生的邮箱不能重复.邮箱前面的长度是6-12之间,产生的邮箱必须包含大写字母.小写字母.数字和特殊字符 和上一期一样 代码中间有段比较混沌 有 ...

随机推荐

  1. 探究Tomcat

    一.什么是Tomcat? 用来装载javaWeb程序,可以称它为Web容器.是一个运行java的网络服务器,底层是Sochet的一个程序,他也是JSP和Servlet的一个容器. 二.什么要用Tomc ...

  2. python学习记录(五)-文件操作

    open()参数说明 ''' 参数1:路径 ./当前目录 ../上一级目录 参数2: 基础模式:w r x a w:写入,不存在则创建,存在则打开,清空文件内容,光标指向最前面 r:只读,不存在则报错 ...

  3. jenkins启动失败,查看状态提示active(exited)

    chown -R jenkins:jenkins /var/lib/jenkins chown -R jenkins:jenkins /var/cache/jenkins chown -R jenki ...

  4. python-实现动态web服务器

    # encoding=utf-8 import socket from multiprocessing import Process import re import sys # 设置静态文件根目录 ...

  5. springboot条件注册Condition注解

    环境识别 import org.springframework.context.annotation.Condition; import org.springframework.context.ann ...

  6. web初始:html记忆

    12.13html框架 <! DOCTYPE html> <html lang="zh-CN"> <head> <meta charset ...

  7. 如何自动化测试你的接口?—— Rest Assured

    前言 不知道大家的项目是否都有对接口API进行自动化测试,反正像我们这种小公司是没有的.由于最近一直被吐槽项目质量糟糕,只能研发自己看看有什么接口测试方案.那么在本文中,我将探索如何使用 Rest A ...

  8. koa中间件的实现原理

    koa中间件的实现原理如何?先来看一个例子. koa的执行顺序是这样的: const middleware = async function (ctx, next) { console.log(1) ...

  9. ThreadPool实现机制

    Android中阻塞队列的应用有哪些 阻塞队列在 Android 中有很多应用,比如: 线程池:线程池任务的执行就是基于一个阻塞队列,如果线程池任务已满,则任务需要等待阻塞队列中的其他任务完成. Ha ...

  10. 基于Vue 使用threejs导入gltf动画模型

    被老师要求学习这个完全不懂的领域的知识,代码东拼西凑终于搞定了,可能写的不好,但这方面的教程很少 某CS**平台的教程都是互相抄,看着烦死. <template> <div id=& ...