[OpenCV-Python] 18 图像梯度
OpenCV-Python:IV OpenCV中的图像处理
18 图像梯度
目标
• 图像梯度,图像边界等
• 使用到的函数有:cv2.Sobel(),cv2.Schar(),cv2.Laplacian() 等
原理
梯度简单来说就是求导。
OpenCV 提供了三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr 和 Laplacian。我们会一一介绍他们。
Sobel,Scharr 其实就是求一阶或二阶导数。Scharr 是对 Sobel(使用小的卷积核求解求解梯度角度时)的优化。Laplacian 是求二阶导数。
18.1 Sobel 算子和 Scharr 算子
Sobel 算子是高斯平滑与微分操作的结合体,所以它的抗噪声能力很好。你可以设定求导的方向(xorder 或 yorder)。还可以设定使用的卷积核的大小(ksize)。如果 ksize=-1,会使用 3x3 的 Scharr 滤波器,它的的效果要比 3x3 的 Sobel 滤波器好(而且速度相同,所以在使用 3x3 滤波器时应该尽量使用 Scharr 滤波器)。3x3 的 Scharr 滤波器卷积核如下:
18.2 Laplacian 算子
拉普拉斯算子可以使用二阶导数的形式定义,可假设其离散实现类似于二阶 Sobel 导数,事实上,OpenCV 在计算拉普拉斯算子时直接调用 Sobel 算子。计算公式如下:
拉普拉斯滤波器使用的卷积核:
代码
下面的代码分别使用以上三种滤波器对同一幅图进行操作。使用的卷积核都是 5x5 的。
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('dave.jpg',0)
laplacian = cv2.Laplacian(img,cv2.CV_64F)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()
结果:
一个重要的事!
在查看上面这个例子的注释时不知道你有没有注意到:当我们可以通过参数 -1 来设定输出图像的深度(数据类型)与原图像保持一致,但是我们在代码中使用的却是 cv2.CV_64F。这是为什么呢?想象一下一个从黑到白的边界的导数是整数,而一个从白到黑的边界点导数却是负数。如果原图像的深度是np.int8 时,所有的负值都会被截断变成 0,换句话说就是把把边界丢失掉。所以如果这两种边界你都想检测到,最好的的办法就是将输出的数据类型设置的更高,比如 cv2.CV_16S,cv2.CV_64F 等。取绝对值然后再把它转回到 cv2.CV_8U。下面的示例演示了输出图片的深度不同造成的不同效果。
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('box.png',0)
# Output dtype = cv2.CV_8U
sobelx8u = cv2.Sobel(img,cv2.CV_8U,1,0,ksize=5)
# Output dtype = cv2.CV_64F. Then take its absolute and convert to cv2.CV_8U
sobelx64f = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
abs_sobel64f = np.absolute(sobelx64f)
sobel_8u = np.uint8(abs_sobel64f)
plt.subplot(1,3,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,2),plt.imshow(sobelx8u,cmap = 'gray')
plt.title('Sobel CV_8U'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,3),plt.imshow(sobel_8u,cmap = 'gray')
plt.title('Sobel abs(CV_64F)'), plt.xticks([]), plt.yticks([])
plt.show()
结果:
更多内容请关注公众号:
[OpenCV-Python] 18 图像梯度的更多相关文章
- opencv python:图像梯度
一阶导数与Soble算子 二阶导数与拉普拉斯算子 图像边缘: Soble算子: 二阶导数: 拉普拉斯算子: import cv2 as cv import numpy as np # 图像梯度(由x, ...
- python实现图像梯度
一,定义与作用 图像梯度作用:获取图像边缘信息 二,Sobel 算子与函数的使用 (1)Sobel 算子------来计算变化率 (2)Sobel函数的使用 (3-1)代码实现(分别): (3-2)代 ...
- Opencv python图像处理-图像相似度计算
一.相关概念 一般我们人区分谁是谁,给物品分类,都是通过各种特征去辨别的,比如黑长直.大白腿.樱桃唇.瓜子脸.王麻子脸上有麻子,隔壁老王和儿子很像,但是儿子下巴涨了一颗痣和他妈一模一样,让你确定这是你 ...
- opencv python:图像直方图 histogram
直接用matplotlib画出直方图 def plot_demo(image): plt.hist(image.ravel(), 256, [0, 256]) # image.ravel()将图像展开 ...
- openCV—Python(5)—— 图像几何变换
一.函数简单介绍 1.warpAffine-图像放射变换(平移.旋转.缩放) 函数原型:warpAffine(src, M, dsize, dst=None, flags=None, borderMo ...
- opencv python:图像金字塔
图像金字塔原理 expand = 扩大+卷积 拉普拉斯金字塔 PyrDown:降采样 PyrUp:还原 example import cv2 as cv import numpy as np # 图像 ...
- opencv python:图像二值化
import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑, ...
- opencv+python实现图像锐化
突然发现网上都是些太繁琐的方法,我就找opencv锐化函数咋这么墨迹. 直接上代码: kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], ...
- Python+OpenCV图像处理(十二)—— 图像梯度
简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值, ...
- opencv学习笔记(六)---图像梯度
图像梯度的算法有很多方法:sabel算子,scharr算子,laplacian算子,sanny边缘检测(下个随笔)... 这些算子的原理可参考:https://blog.csdn.net/poem_q ...
随机推荐
- (c语言描述 函数递归汉诺塔)
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序 ...
- Altium Designer在原理图中复制报错InvalidParameter解决
Altium Designer 原理图复制出现 InvalidParameter Exception Occurred In Copy 解决方案为将下图红框中的√去掉 将红框中√去掉就点击右下 ...
- 获取UndeclaredThrowableException异常信息
一.堆栈错误信息如下,要获取红框里的message 说明:ValidationException为自定义异常,继承自Exception 二.代码如下
- Linux(CentOS8) 安装 Docker
查询当前系统的相关信息 cat /etc/os-release 输入内容如下 校验当前CentOS内核版本 说明:Docker 要求 CentOS 的内核版本,至少高于 3.10 .低于 3.10 的 ...
- mysql 死锁解决
查看锁记录等待时间: SHOW VARIABLES LIKE 'innodb_lock_wait_timeout'; 把超时等待时间修改为5秒: SET innodb_lock_wait_timeou ...
- App测试之appium参数入门
Appium入门参数: platformName:平台名称,一般是Android或iOS: platformVersion:平台的版本号,可以使用以下命令: adb shell getprop ro. ...
- 执行sql语句,查询sql版本
SELECT VERSION();
- Linux系统mysql免安装版配置指南
1.下载(/usr/local目录) wget https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.32-linux-glibc2.12-x ...
- 文件上传 upload-labs Pass-17 二次渲染
Pass-17 审计源码 $is_upload = false; $msg = null; if (isset($_POST['submit'])){ // 获得上传文件的基本信息,文件名,类型,大小 ...
- DSC:数仓SQL脚本迁移的神奇工具
摘要:本文介绍的DSC工具是针对数据库切换时面临的迁移任务而开发的免安装命令行工具.目的是提供简单.快速.可靠的SQL脚本迁移服务. 本文分享自华为云社区<GaussDB(DWS)DSC工具系列 ...