「SHOI2014」概率充电器
题面

n <= 500000 0<= p,qi <= 100
题解
这是道概率树形DP题,但是很难推怎么用加法原理和乘法原理正向求每个点被充电的概率,所以我们求每个点不被充电的概率。
我们发现求不被充电的概率很好求。
dp[x][0] 表示x点不被x的子树(包括它自己)充电的概率,dp[x][1] 表示x点不被x的祖先充电的概率。

我们发现,这里面有除法,所以要判断是否为零,我们会发现,如果为零的话,那么dp[x][1]*dp[x][0]就肯定等于零,所以dp[x][1]可以取任意值,最后的答案也是对的。
CODE
#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<queue>
#include<stack>
#include<algorithm>
#define LL long long
#define MAXN 500005
using namespace std;
inline int read() {
int f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-') f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 + s - '0';s = getchar();}
return x * f;
}
struct ed{
int v;
double w;
ed(){v = 0;w = 0.0;}
ed(int V,double W){v = V;w = W;}
};
vector<ed> g[MAXN];
double dp[MAXN][2],a[MAXN];
int n,m,i,j,s,o,k,cnt;
void dfs(int x,int fa) {
dp[x][0] = (1.0 - a[x]);
// dp[x][0] = min(dp[x][0],1.0);
for(int i = 0;i < g[x].size();i ++) {
if(g[x][i].v != fa) {
dfs(g[x][i].v,x);
int y = g[x][i].v;
double w = g[x][i].w;
dp[x][0] *= (dp[y][0] + (1.0 - dp[y][0]) * (1.0 - w));
// dp[x][0] = min(dp[x][0],1.0);
}
}
return ;
}
void dfs2(int x,int fa,double edge) {
double t = (dp[x][0] + (1.0 - dp[x][0]) * (1.0 - edge));
if(t < 1e-6) t = 0;
else t = dp[fa][1] * dp[fa][0] / t;
dp[x][1] = t + (1.0 - t) * (1 - edge);
if(fa == x) dp[x][1] = 1.0;
// dp[x][0] = min(dp[x][0],1.0);
for(int i = 0;i < g[x].size();i ++) {
if(g[x][i].v != fa) {
dfs2(g[x][i].v,x,g[x][i].w);
}
}
return ;
}
int main() {
n = read();
for(int i = 1;i < n;i ++) {
s = read();o = read();
double p = read() / 100.0;
g[s].push_back(ed(o,p));
g[o].push_back(ed(s,p));
}
for(int i = 1;i <= n;i ++) {
a[i] = read() / 100.0;
}
dfs(1,1);
dfs2(1,1,0.0);
double ans = 0.0;
for(int i = 1;i <= n;i ++) {
ans += (1.0 - dp[i][0]*dp[i][1]);
}
printf("%.6f\n",ans);
return 0;
}
「SHOI2014」概率充电器的更多相关文章
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- 「SHOI2014」三叉神经树 解题报告
「SHOI2014」三叉神经树 膜拜神仙思路 我们想做一个类似于动态dp的东西,首先得确保我们的运算有一个交换律,这样我们可以把一长串的运算转换成一块一块的放到矩阵上之类的东西,然后拿数据结构维护. ...
- [LOJ 2190] 「SHOI2014」信号增幅仪
[LOJ 2190] 「SHOI2014」信号增幅仪 链接 链接 题解 坐标系直到 \(x\) 轴与椭圆长轴平行 点的坐标变换用旋转公式就可以了 因为是椭圆,所以所有点横坐标除以 \(p\) 然后最小 ...
- 「SHOI2014」三叉神经树
「SHOI2014」三叉神经树 给你一颗由\(n\)个非叶子结点和\(2n+1\)个叶子结点构成的完全三叉树,每个叶子结点有一个输出:\(0\)或\(1\),每个非叶子结点的输出为自己的叶子结点中较多 ...
- 【LOJ】#2187. 「SHOI2014」三叉神经树
题解 可以发现每次修改的是这个点往上一条连续的链,如果我要把1改成0,需要满足这一段往上的一部分都有两个1 如果我要把0改成1,需要满足这一段往上的部分有两个0 对于每个点记录1的个数,发现我们只会把 ...
- LOJ#2190. 「SHOI2014」信号增幅仪(最小圆覆盖)
题面 传送门 题解 我连椭圆是个啥都不知道导致这么简单一道题我一点思路都没有-- 我们把坐标系旋转一下,让半长轴成为新的\(x\)轴,也就是说所有点都绕原点逆时针旋转\(360-a\)度,然后再把所有 ...
- 【BZOJ】3566: [SHOI2014]概率充电器
[算法]树型DP+期望DP [题意]一棵树上每个点均有直接充电概率qi%,每条边有导电概率pi%,问期望有多少结点处于充电状态? [题解]引用自:[BZOJ3566][SHOI2014]概率充电器 树 ...
- BZOJ 3566: [SHOI2014]概率充电器( 树形dp )
通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...
- BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]
3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...
随机推荐
- 30.Mysql主从复制、读写分离
Mysql主从复制.读写分离 目录 Mysql主从复制.读写分离 读写分离 读写分离概述 为什么要读写分离 什么时候要读写分离 主从复制与读写分离 mysql支持的复制类型 主从复制的工作过程 初始环 ...
- 关于vue项目中搜索节流的实现
我们经常会遇到这种需求,现在我们在使用百度搜索的时候他们的思想也是根据防抖节流而实现的,至于用防抖还是节流根据自己需求. <template> <input type="t ...
- hadoop集群搭建——单节点(伪分布式)
1. 准备工作: 前提:需要电脑安装VM,且VM上安装一个Linux系统 注意:本人是在学习完尚学堂视频后,结合自己的理解,在这里做的总结.学习的视频是:大数据. 为了区分是在哪一台机器做的操作,eg ...
- Pyinstaller打包pikepdf失败的问题排查
问题 最近在项目里用到了pikepdf这个库,用于实现pdf水印插入的一个小功能,源码调试阶段运行一切OK但是在出包时报了如下异常. Traceback (most recent call last) ...
- Windows 通过本地计算机IP链接Mysql设置
前言 1.Mysql-1130错误:无法远程连接 错误:ERROR 1130: Host '192.168.1.3' is not allowed to connect to thisMySQL se ...
- 无语——真的好用到不行的7个Python小技巧
本文总结了我几个我在学习python过程中,用到的几个超好用的操作,这里分享给大家,我相信你们也会非常喜欢,目录如下.这里提前索要再看,记得点一点再看哦.这只是其中一些技巧,以后会慢慢和大家分享. 1 ...
- Jenkins+Svn+Docker搭建持续集成环境 自动部署
一.准备工作: 两台服务器:192.168.206.212,192.168.206.213 自己新建一个maven项目 其中两台机子做下面的软件配置 212机子: 安装expect并配置: 安装jen ...
- HashSet集合存储数据的结构和HashSet集合存储元素不重复的原理
HashSet集合存储数据的结构 HashSet集合存储元素不重复的原理 //创建HashSet集合对象 Hashset<String> set = new HashSet<> ...
- Python语法糖,提升编程幸福感!!!
转载请注明出处️ 作者:测试蔡坨坨 原文链接:caituotuo.top/a52bc938.html 大家好,我是测试蔡坨坨. 今天,我们来盘点一下Python中的那些语法糖. 什么是语法糖?语法糖不 ...
- 互联网产品前后端分离测试(Eolink 分享)
在互联网产品质量保障精细化的大背景下,根据系统架构从底层通过技术手段发起测试,显得尤为重要,测试分层的思想正是基于此产生的,目前也是较为成熟的测试策略. 一般采用自下而上的测试方式,以最简单的单一前后 ...