题面

原题题面

转化方便版题意:

n

n

n 堆石子,第

i

i

i 堆有

c

i

[

1

,

m

]

c_i\in [1,m]

ci​∈[1,m] 个石子,有

q

q

q 次询问,每次询问给出

L

i

,

R

i

L_i,R_i

Li​,Ri​ ,先把

c

i

∉

[

L

i

,

R

i

]

c_i\not\in [L_i,R_i]

ci​​∈[Li​,Ri​] 的石堆都扔掉,然后把每堆石子减少

L

i

L_i

Li​ 个,最后用剩下的若干堆石子做

N

i

m

Nim

Nim 游戏,先手必胜输出

A

\tt A

A ,后手必胜输出

B

\tt B

B 。

1

n

,

m

,

q

2

1

0

5

1\leq n,m,q\leq2\cdot10^5

1≤n,m,q≤2⋅105.

题解

官方题解,是

O

(

N

N

log

N

)

O(N\sqrt{N\log N})

O(NNlogN

​) 的做法。

对每个询问暴力求解,是

O

(

N

2

)

O(N^2)

O(N2) 的。或者,如果记录每一种

c

i

c_i

ci​ 值的出现次数的话,也可以是

O

(

N

M

)

O(NM)

O(NM) 的。后者可以优化:

c

i

c_i

ci​ 的二进制表示有

18

\tt18

18 位,我们把前面九位和后面九位分开算,这样,分别就只有

2

9

=

512

2^9=512

29=512 种取值,也就是

M

\sqrt{M}

M

​ 种取值了,这就增加了暴力的可能性。同时,只管前九位和后九位都是能比较方便地处理加减法的,因此这样刚好是可行的,要是分成前六位、中六位、后六位就及其不好做了。

但是,处理后九位数字还是比较麻烦的。而且,这个时间复杂度也不优。

不如看看下面又易懂又好写还在时间复杂度上暴踩官解的做法。


真是妙蛙种子吃着妙脆角,妙进了米奇妙妙屋,妙到家了

真的就不能每一位分开来做了吗?

加减法固然会对二进制表示产生不好计量的影响,但是我们有这么一条很容易发现的结论:

  • A

    <

    2

    k

    A<2^k

    A<2k ,则

    A

    +

    2

    k

    =

    A

    x

    o

    r

    2

    k

    A+2^k=A~xor~2^k

    A+2k=A xor 2k

这种情况下,加法是等同于异或的!

那我们不妨就想个办法,能不能把减法变成加法,然后把要加的部分按位拆分开来,利用上面的结论一步一步异或进去呢?

有!那就是倍增。倍增可以把减法换成加法,而且不难发现,倍增刚好是从高位往低位考虑的,前面要加的数的 lowbit 一定比后面的数都大。

我们定义

f

[

i

]

[

j

]

f[i][j]

f[i][j] 为询问

L

=

i

,

R

=

i

+

2

j

1

L=i,R=i+2^j-1

L=i,R=i+2j−1 时的答案,不难发现

f

[

i

]

[

0

]

=

0

f[i][0]=0

f[i][0]=0。

计算

f

[

i

]

[

j

]

f[i][j]

f[i][j] 的时候,先异或上

f

[

i

]

[

j

1

]

f[i][j-1]

f[i][j−1] ,然后由于

f

[

i

+

2

j

1

]

[

j

1

]

f[i+2^{j-1}][j-1]

f[i+2j−1][j−1] 中的每堆石子个数

<

2

j

1

< 2^{j-1}

<2j−1 ,我们把这些石堆加上

2

j

1

2^{j-1}

2j−1 时,等价于异或

2

j

1

2^{j-1}

2j−1,因此我们只需要再知道

[

i

+

2

j

1

,

i

+

2

j

1

]

[i+2^{j-1},i+2^j-1]

[i+2j−1,i+2j−1] 区间之内石堆的个数,就可以转移了。令

c

t

[

i

]

[

j

]

ct[i][j]

ct[i][j] 表示

c

i

[

i

,

i

+

2

j

1

]

c_i\in[i,i+2^j-1]

ci​∈[i,i+2j−1] 的石堆的个数,则:

f

[

i

]

[

j

]

=

f

[

i

]

[

j

1

]

x

o

r

f

[

i

+

2

j

1

]

[

j

1

]

x

o

r

(

2

j

1

(

c

t

[

i

+

2

j

1

]

[

j

1

]

%

2

)

)

c

t

[

i

]

[

j

]

=

c

t

[

i

]

[

j

1

]

+

c

t

[

i

+

2

j

1

]

[

j

1

]

f[i][j]=f[i][j-1]~{\tt xor}~f[i+2^{j-1}][j-1]~{\tt xor}~\Big( 2^{j-1}\cdot(ct[i+2^{j-1}][j-1]\,\%\,2) \Big)\\ ct[i][j]=ct[i][j-1]+ct[i+2^{j-1}][j-1]

f[i][j]=f[i][j−1] xor f[i+2j−1][j−1] xor (2j−1⋅(ct[i+2j−1][j−1]%2))ct[i][j]=ct[i][j−1]+ct[i+2j−1][j−1]

询问的时候,类似的。由于是倍增,每次访问到的

f

[

i

]

[

j

]

f[i][j]

f[i][j] 的

j

j

j 都会变小,也就是说它所代表的这个区间内的石堆

c

i

c_i

ci​ 都小于先前的

2

j

2^j

2j ,都可以把加法换成异或,再通过

c

t

[

i

]

[

j

]

ct[i][j]

ct[i][j] 补到

f

[

i

]

[

j

]

f[i][j]

f[i][j] 中。

代码也很好理解,基本是标准的预处理倍增。时间复杂度只有

O

(

N

log

N

)

O(N\log N)

O(NlogN) 。

CODE

比解说还短的倍增代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 200005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x) & (x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
int n,m,i,j,s,o,k;
int c[MAXN],dp[MAXN][20],ct[MAXN][20];
int main() {
// Input
n = read();m = read();
for(int i = 1;i <= n;i ++)
c[i] = read(),ct[c[i]][0] ++; // Init
for(int i = m;i > 0;i --) {
for(int j = 1;i+(1<<j)-1 <= m;j ++) {
ct[i][j] = ct[i][j-1] + ct[i+(1<<(j-1))][j-1];
dp[i][j] = dp[i][j-1] ^ dp[i+(1<<(j-1))][j-1] ^ ((ct[i+(1<<(j-1))][j-1] & 1) ? (1<<(j-1)):0);
}
} // Query
int q = read();
while(q --) {
s = read();o = read();
int xr = 0,as = 0;
for(int j = 18;j >= 0;j --) {
if(s+(1<<j)-1 <= o) {
as ^= dp[s][j]^((ct[s][j] & 1) ? xr:0);
xr ^= (1<<j); s += (1<<j);
}
}
printf(as ? "A":"B");
}
return 0;
}

CF1511G Chips on a Board (倍增)的更多相关文章

  1. Codeforces 1511G - Chips on a Board(01trie/倍增)

    Codeforces 题面传送门 & 洛谷题面传送门 一道名副其实的 hot tea 首先显然可以发现这俩人在玩 Nim 游戏,因此对于一个 \(c_i\in[l,r]\) 其 SG 值就是 ...

  2. Architecture of Device I/O Drivers, Device Driver Design

    http://www.kalinskyassociates.com/Wpaper4.html Architecture of Device I/O Drivers Many embedded syst ...

  3. ARM JTAG 信号 RTCK 应该如何处理?

    用户在调试内嵌可综合内核的 CPU 如 ARM7TDMI-S 时,需要通过打开仿真器的自适应时钟功能. 此时,ARM仿真器根据 RTCK 时钟信号的频率,产生可用于 CPU 内核当前时钟主频的最快的 ...

  4. Implementation of Serial Wire JTAG flash programming in ARM Cortex M3 Processors

    Implementation of Serial Wire JTAG flash programming in ARM Cortex M3 Processors The goal of the pro ...

  5. CF1511G-Chips on a Board【倍增】

    正题 题目链接:https://www.luogu.com.cn/problem/CF1511G 题目大意 给出\(n*m\)的棋盘上每一行有一个棋子,双方轮流操作可以把一个棋子向左移动若干步(不能不 ...

  6. Codeforces Round #194 (Div. 2) D. Chips

    D. Chips time limit per test:1 second memory limit per test:256 megabytes input:standard input outpu ...

  7. ACM-ICPC Beijing 2016 Genius ACM(倍增+二分)

    描述 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M 对数(即 2∗M 个数,不能重复使用集合中的数,如果 S 中的整 数不够 M 对,则取到不能取为止),使 ...

  8. CH0601 Genius ACM【倍增】【归并排序】

    0601 Genius ACM 0x00「基本算法」例题 描述 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M 对数(即 2∗M 个数,不能重复使用集合中的数 ...

  9. Codeforces Round #194 (Div. 1) B. Chips 水题

    B. Chips Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/333/problem/B D ...

随机推荐

  1. swap函数模板

    在许多应用程序中,都有交换相同类型的两个变量内容的需要.例如,在对整数数组进行排序时,将需要一个函数来交换两个变量的值,如下所示: void swap(int &a, int &b) ...

  2. 【生成对抗网络学习 其三】BiGAN论文阅读笔记及其原理理解

    参考资料: 1.https://github.com/dragen1860/TensorFlow-2.x-Tutorials 2.<Adversarial Feature Learning> ...

  3. JS:eval

    定义和用法: eval() 函数计算 JavaScript 字符串,并把它作为脚本代码来执行.eval()函数并不会创建一个新的作用域,并且它的作用域就是它所在的作用域. 如果参数是一个表达式,eva ...

  4. Vue引入vuetify框架你需要知道的几点

    1.命令行安装 npm install vuetify --save 2.在src目录中创建一个名为的文件夹plugins在里面,添加一个vuetify.js文件.代码如下 import Vue fr ...

  5. Windows 2008R2 IIS环境配置(靶机)

    一.Windows 2008 R2系统安装 VMware Workstation 15安装包 链接:https://pan.baidu.com/s/11sYcZTYPqIV-pyvzo7pWLQ 提取 ...

  6. freeswitch拨打分机号源代码跟踪

    概述 freeswitch是一款非常好用的开源VOIP软交换平台. 之前我们有介绍过使用fs拨打分机号的方法,其中代码流程是比较复杂的,所以单独开一章介绍. fs拨打分机号,是使用send_dtmf接 ...

  7. 使用Tapdata一步搞定关系型数据库到MongoDB的战略迁移

      摘要:数据库作为最关键的基础设施,随着互联网时代的信息高速增长,关系型数据库因其高门槛.高成本以及扩展性差等原因导致的局限性逐渐浮出水面,如今更是面临诸多问题和挑战,Tapdata 专注新一代实时 ...

  8. 跨模态语义关联对齐检索-图像文本匹配(Image-Text Matching)

    论文介绍:Negative-Aware Attention Framework for Image-Text Matching (基于负感知注意力的图文匹配,CVPR2022) 代码主页:https: ...

  9. day11 - 多线程

    1内容 进程.线程介绍 Java中 线程的实现方式 Thread 类 Runnable 接口 Callable 接口 线程相关的方法 线程安全问题 - 同步技术 线程等待唤醒机制 进程(Process ...

  10. 自动登录token过期问题

    之前遇到的一个也不算棘手的问题,自动登录本地存储了token却无法登录到主页. 先说一下我自动登录的思路:在用户登录成功时,将 token 存入 cookie :当用户下次来到本网站,读取 cooki ...