维度扩展

x.unsqueeze(n)

在 n 号位置添加一个维度

例子:

import torch

x = torch.rand(3,2)
x1 = x.unsqueeze(0) # 在第一维的位置添加一个维度
x2 = x.unsqueeze(1) # 在第二维的位置添加一个维度
x3 = x.unsqueeze(2) # 在第三维的位置添加一个维度
print(x1.shape)
print(x2.shape)
print(x3.shape)
>> torch.Size([1, 3, 2])
>> torch.Size([3, 1, 2])
>> torch.Size([3, 2, 1])

由上面的例子可见,tensor.unsqueeze(n) 可以很方便的为tensor添加一个维度,那么是不是可以在tensor的任意维度上添加一个维度呢,答案是否定的,即参数 n 存在范围,n 位于 [-(dim+1), dim]; 其中 dim为tensor的维度的个数,比如在上例中,tensor x 的dim = 2, 即在上例中 n 不位于 [-3, 2] 时会报错。如下:

import torch

x = torch.rand(3,2)
x1 = x.unsqueeze(3)
x2 = x.unsqueeze(-4)
print(x1.shape)
print(x2.shape)
>> IndexError: Dimension out of range (expected to be in range of [-3, 2], but got 3)
>> IndexError: Dimension out of range (expected to be in range of [-3, 2], but got -4)

没错,n 的值还能是负数,其负数表示的是在从右往左的 |n| 的维数上增加一维,例:

import torch

x = torch.rand(3,2)
x1 = x.unsqueeze(-1)
x2 = x.unsqueeze(-2)
print(x1.shape)
print(x2.shape)
>> torch.Size([3, 2, 1])
>> torch.Size([3, 1, 2])

此外还有一种语法的变体torch.unsqueeze(x,n) , 作用同 x.unsqueeze(n),都表示在第n位的位置添加1维,只不过语法稍有区别。

维度压缩

x.squeeze(n)

对 第 n 维 的位置进行维度压缩,如果该位置的维度值为1 ,则压缩,否则不进行任何操作。而当不设置 参数 n 时 即:x.squeeze() ,则对tensor x 的所有维度值为1的维度进行压缩,而其余不为1 的维度不进行处理。如下:

import torch

x = torch.rand(3,2,1)
x1 = x.squeeze(2) # n号位置上的维度为1。 压缩
x2 = x.squeeze(1) # n号位置上的维度不为1。 不处理
x3 = x.unsqueeze(0)
x3 = x3.squeeze() # 对tensor x3 的所有维度为1的维度压缩
>> torch.Size([3, 2])
>> torch.Size([3, 2, 1])
>> torch.Size([3, 2])

同样的,与 unsqueeze() 一样,squeeze(n) 的 参数 n 一样存在范围,且均为 [-(dim+1), dim]; 其中 dim为tensor的维度的个数,在上例中,tensor x 的dim = 2。当n超过这个范围时就会报错。如下:

import torch

x = torch.rand(3,2,1)
x1 = x.squeeze(4)
print(x1)
>> IndexError: Dimension out of range (expected to be in range of [-3, 2], but got 4)

也同样的,此外还有一种语法的变体torch.squeeze(x,n) , 作用同 x.squeeze(n),都表示在第n位的位置压缩维度(如果该位置维度为1),只不过语法稍有区别。

Tips -- .size() 和 .shape 的异同

:两者都可以获得tensor的维度大小:

import torch

x = torch.rand(3,2,1)
print(x.shape)
print(x.size()) >> torch.Size([3, 2, 1])
>> torch.Size([3, 2, 1])

异: shape 是一个Tensor类中的属性,作为Tensor类的实例可以直接通过 . 的方式获得shape属性,即获得tensor的维度的大小;

size() 是 Tensor类继承来的无参方法,所以其要带小括号,Tensor类的实例也可以调用类的成员方法。

另外,在 python 的库 numpy 中,size和shape 是numpy中的函数,size()计算矩阵中所有元素的个数;shape()返回矩阵的维度值。如下:

import numpy as np

x = np.array([[1,2,3],[4,5,6],[7,8,9]])
print(np.shape(x))
print(np.size(x))
print(x.shape[0]) # 显示矩阵的行数
>> (3, 3)
>> 9
>> 3

Pytorch Tensor 维度的扩充和压缩的更多相关文章

  1. pytorch tensor 维度理解.md

    torch.randn torch.randn(*sizes, out=None) → Tensor(张量) 返回一个张量,包含了从标准正态分布(均值为0,方差为 1)中抽取一组随机数,形状由可变参数 ...

  2. pytorch 中改变tensor维度的几种操作

    具体示例如下,注意观察维度的变化 #coding=utf-8 import torch """改变tensor的形状的四种不同变化形式""" ...

  3. [TensorFlow]Tensor维度理解

    http://wossoneri.github.io/2017/11/15/[Tensorflow]The-dimension-of-Tensor/ Tensor维度理解 Tensor在Tensorf ...

  4. tensorflow中的函数获取Tensor维度的两种方法:

    获取Tensor维度的两种方法: Tensor.get_shape() 返回TensorShape对象, 如果需要确定的数值而把TensorShape当作list使用,肯定是不行的. 需要调用Tens ...

  5. Pytorch 张量维度

    Tensor类的成员函数dim()可以返回张量的维度,shape属性与成员函数size()返回张量的具体维度分量,如下代码定义了一个两行三列的张量: f = torch.randn(2, 3) pri ...

  6. Pytorch Tensor 常用操作

    https://pytorch.org/docs/stable/tensors.html dtype: tessor的数据类型,总共有8种数据类型,其中默认的类型是torch.FloatTensor, ...

  7. Pytorch Tensor, Variable, 自动求导

    2018.4.25,Facebook 推出了 PyTorch 0.4.0 版本,在该版本及之后的版本中,torch.autograd.Variable 和 torch.Tensor 同属一类.更确切地 ...

  8. tensor维度变换

    维度变换是tensorflow中的重要模块之一,前面mnist实战模块我们使用了图片数据的压平操作,它就是维度变换的应用之一. 在详解维度变换的方法之前,这里先介绍一下View(视图)的概念.所谓Vi ...

  9. pytorch tensor的索引与切片

    切片方式与numpy是类似. * a[:2, :1, :, :], * 可以用-1索引. * ::2,表示所有数据,间隔为2,即 start:end:step. *  a.index_select(1 ...

随机推荐

  1. 【PyTorch】常用的神经网络层汇总(持续补充更新)

    1. Convolution Layers 1.1 nn.Conv2d (1)原型 torch.nn.Conv2d(in_channels, out_channels, kernel_size, st ...

  2. Flutter和iOS混编详解

    前言 下面的内容是最近在使用Flutter和我们自己项目进行混编时候的一些总结以及自己踩的一些坑,处理完了就顺便把整个过程以及一些我们可能需要注意的点全都梳理出来,希望对有需要的小伙伴有点帮助,也方便 ...

  3. selenium模块 phantomJs 谷歌无可视界面

    参考微博: 什么是selenium 一款基于浏览器自动化的模块 什么是浏览器自动化 通过脚本程序或者python代码,这组程序或者代码表示一些行为动作,selenium可以让这些行为动作映射到浏览器中 ...

  4. Flask01 第一个flask项目

    参考地址:https://github.com/miguelgrinberg/microblog/tree/v0.1 flask环境[苹果M1] 添加虚拟环境 python3 -m venv venv ...

  5. mapstruct 的 mapstruct-processor 自动生成的 Impl 文件中未设置属性值(时好时坏)

    配置依赖和注解处理器 ... <properties> <org.mapstruct.version>1.4.2.Final</org.mapstruct.version ...

  6. CentOS6.x静默安装Oracle12c

    一.准备 1.1 安装环境 系统要求 内存 > 2G 安装目录空间 > 6.5G /tmp目录空间 > 1G 操作系统 cat /etc/redhat-release 用rpm命令确 ...

  7. 105_Power Pivot财务科目(层级深度&筛选深度)

    博客:www.jiaopengzi.com 焦棚子的文章目录 请点击下载附件 1.背景 在财务科目中,需要按照科目层级来显示:在excel中都是用公式来实现,而且对于数据的管理及更新是一件头痛的事情, ...

  8. nacos 快速入门

    每日一句 外表可是具有欺骗性的. 每日一句 No victory comes without a price. 凡是成功就要付出代价. 概述 这个快速开始手册是帮忙您快速在您的电脑上,下载.安装并使用 ...

  9. CA周记 - Build 2022 上开发者最应关注的七大方向主要技术更新

    一年一度的 Microsoft Build 终于来了,带来了非常非常多的新技术和功能更新.不知道各位小伙伴有没有和我一样熬夜看了开幕式和五个核心主题的全过程呢?接下来我和大家来谈一下作为开发者最应关注 ...

  10. 从头创建一个新的vue项目------用npm|yarn下载vue-cli|vue-ui创建vue

    1.下载node或者是nvm node可以直接去node官网下载,http://nodejs.cn/,默认是长期维护的版本 如果想管理node的版本,可以下载nvm.这个是可选的.但是作为一个前端工程 ...