本文首发于我的个人博客网站 等待下一个秋-Flink

什么是CDC?

CDC是(Change Data Capture 变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据 或 数据表的插入INSERT、更新UPDATE、删除DELETE等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。

1. 环境准备

  • mysql

  • elasticsearch

  • flink on yarn

说明:如果没有安装hadoop,那么可以不用yarn,直接用flink standalone环境吧。

2. 下载下列依赖包

下面两个地址下载flink的依赖包,放在lib目录下面。

  1. flink-sql-connector-elasticsearch7_2.11-1.13.5.jar
  2. flink-sql-connector-mysql-cdc-1.4.0.jar

这里flink-sql-connector-mysql-cdc,在这里只能下到最新版1.4:

可以自行https://github.com/ververica/flink-cdc-connectors下载新版mvn clean install -DskipTests 自己编译。

这是我编译的最新版2.2,传上去发现太新了,如果重新换个版本,我得去gitee下载源码,不然github速度太慢了,然后用IDEA编译打包,又得下载一堆依赖。我投降,我直接去网上下载了个1.4的直接用了。

我下载的jar包,放在flink的lib目录下面:

flink-sql-connector-elasticsearch7_2.11-1.13.5.jar
flink-sql-connector-mysql-cdc-1.4.0.jar

3. 启动flink-sql client

  1. 先在yarn上面启动一个application,进入flink13.5目录,执行:
bin/yarn-session.sh -d -s 1 -jm 1024 -tm 2048 -qu root.flink-queue-nm flink-cdc
  1. 进入flink sql命令行
bin/sql-client.sh embedded -s flink-cdc

4. 同步数据

这里有一张mysql表:

CREATE TABLE `product_view` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`user_id` int(11) NOT NULL,
`product_id` int(11) NOT NULL,
`server_id` int(11) NOT NULL,
`duration` int(11) NOT NULL,
`times` varchar(11) NOT NULL,
`time` datetime NOT NULL,
PRIMARY KEY (`id`),
KEY `time` (`time`),
KEY `user_product` (`user_id`,`product_id`) USING BTREE,
KEY `times` (`times`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4; -- 样本数据
INSERT INTO `product_view` VALUES ('1', '1', '1', '1', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('2', '1', '1', '1', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('3', '1', '1', '3', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('4', '1', '1', '2', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('5', '8', '1', '1', '120', '120', '2020-05-14 13:14:00');
INSERT INTO `product_view` VALUES ('6', '8', '1', '2', '120', '120', '2020-05-13 13:14:00');
INSERT INTO `product_view` VALUES ('7', '8', '1', '3', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('8', '8', '1', '3', '120', '120', '2020-04-23 13:14:00');
INSERT INTO `product_view` VALUES ('9', '8', '1', '2', '120', '120', '2020-05-13 13:14:00');
  1. 创建数据表关联mysql
CREATE TABLE product_view_source (
`id` int,
`user_id` int,
`product_id` int,
`server_id` int,
`duration` int,
`times` string,
`time` timestamp,
PRIMARY KEY (`id`) NOT ENFORCED
) WITH (
'connector' = 'mysql-cdc',
'hostname' = '192.168.1.2',
'port' = '3306',
'username' = 'bigdata',
'password' = 'bigdata',
'database-name' = 'test',
'table-name' = 'product_view'
);

这样,我们在flink sql client操作这个表相当于操作mysql里面的对应表。

  1. 创建数据表关联elasticsearch
CREATE TABLE product_view_sink(
`id` int,
`user_id` int,
`product_id` int,
`server_id` int,
`duration` int,
`times` string,
`time` timestamp,
PRIMARY KEY (`id`) NOT ENFORCED
) WITH (
'connector' = 'elasticsearch-7',
'hosts' = 'http://192.168.1.2:9200',
'index' = 'product_view_index',
'username' = 'elastic',
'password' = 'elastic'
);

这样,es里面的product_view_index这个索引会被自动创建,如果想指定一些属性,可以提前手动创建好索引,我们操作表product_view_sink,往里面插入数据,可以发现es中已经有数据了。

  1. 同步数据

建立同步任务,可以使用sql如下:

insert into product_view_sink select * from product_view_source;

这个时候是可以退出flink sql-client的,然后进入flink web-ui,可以看到mysql表数据已经同步到elasticsearch中了,对mysql进行插入删除更新,elasticsearch都是同步更新的。

参考资料

https://ververica.github.io/flink-cdc-connectors/master/content/about.html

flink-cdc实时同步mysql数据到elasticsearch的更多相关文章

  1. canal-1.1.5实时同步MySQL数据到Elasticsearch

    一.环境准备 1.jkd 8+ 2.mysql 5.7+ 3.Elasticsearch 7+ 4.kibana 7+ 5.canal.adapter 1.1.5 二.部署 一.创建数据库CanalD ...

  2. 使用Logstash来实时同步MySQL数据到ES

    上篇讲到了ES和Head插件的环境搭建和配置,也简单模拟了数据作测试 本篇我们来实战从MYSQL里直接同步数据 一.首先下载和你的ES对应的logstash版本,本篇我们使用的都是6.1.1 下载后使 ...

  3. 推荐一个同步Mysql数据到Elasticsearch的工具

    把Mysql的数据同步到Elasticsearch是个很常见的需求,但在Github里找到的同步工具用起来或多或少都有些别扭. 例如:某记录内容为"aaa|bbb|ccc",将其按 ...

  4. centos7配置Logstash同步Mysql数据到Elasticsearch

    Logstash 是开源的服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到您最喜欢的“存储库”中.个人认为这款插件是比较稳定,容易配置的使用Logstash之前,我们得明确 ...

  5. 同步mysql数据到ElasticSearch的最佳实践

    Elasticsearch是一个实时的分布式搜索和分析引擎.它可以帮助你用前所未有的速度去处理大规模数据.ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全 ...

  6. 实战ELK(6)使用logstash同步mysql数据到ElasticSearch

    一.准备 1.mysql 我这里准备了个数据库mysqlEs,表User 结构如下 添加几条记录 2.创建elasticsearch索引 curl -XPUT 'localhost:9200/user ...

  7. 【记录】ELK之logstash同步mysql数据到Elasticsearch ,配置文件详解

    本文出处:https://my.oschina.net/xiaowangqiongyou/blog/1812708#comments 截取部分内容以便学习 input { jdbc { # mysql ...

  8. Elasticsearch--Logstash定时同步MySQL数据到Elasticsearch

    新地址体验:http://www.zhouhong.icu/post/139 一.Logstash介绍 Logstash是elastic技术栈中的一个技术.它是一个数据采集引擎,可以从数据库采集数据到 ...

  9. Centos8 部署 ElasticSearch 集群并搭建 ELK,基于Logstash同步MySQL数据到ElasticSearch

    Centos8安装Docker 1.更新一下yum [root@VM-24-9-centos ~]# yum -y update 2.安装containerd.io # centos8默认使用podm ...

随机推荐

  1. 【python基础】第01回 计算机基础1

    本章内容概要 1.文件路径2.typora主要功能介绍3.typora语法学习(markdown)4.计算机的本质5.计算机五大组成部分6.网络博文编写教程 本章内容详解 1.文件路径 --路径:可以 ...

  2. ByDesign各版本区别

    by zyi

  3. 强化学习-学习笔记8 | Q-learning

    上一篇笔记认识了Sarsa,可以用来训练动作价值函数\(Q_\pi\):本篇来学习Q-Learning,这是另一种 TD 算法,用来学习 最优动作价值函数 Q-star,这就是之前价值学习中用来训练 ...

  4. Redis系列3:高可用之主从架构

    Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 1 主从复制介绍 上一篇<Redis系列2:数据持久化提高可用性>中,我们介绍了Redis中的数据 ...

  5. nginx服务器配置传递给下一层的信息的一些参数-设置哪些跨域的域名可访问

    http { server_tokens off; #隐藏nginx版本 proxy_headers_hash_max_size 51200; proxy_headers_hash_bucket_si ...

  6. Eclipse Ctrl+鼠标左键不能查看源代码

    查询当前项目的使用的java包版本. 找到java包相应版本的安装路径. 在 "Source Attachment"对话框下,选择"External location&q ...

  7. 乐观锁和悲观锁在kubernetes中的应用

    数据竞争和竞态条件 Go并发中有两个重要的概念:数据竞争(data race)和竞争条件(race condition).在并发程序中,竞争问题可能是程序面临的最难也是最不容易发现的错误之一. 当有两 ...

  8. Java中修饰符的分类及用法

    访问权限修饰符: public 修饰class,方法,变量: 所修饰类的名字必须与文件名相同,文件中最多能有一个pulic修饰的类. private class不可用,方法,变量可以用: 只限于本类成 ...

  9. HBase学习(二) 基本命令 Java api

    一.Hbase shell 1.Region信息观察 创建表指定命名空间 在创建表的时候可以选择创建到bigdata17这个namespace中,如何实现呢? 使用这种格式即可:'命名空间名称:表名' ...

  10. RabbitMQ细说之开篇

    前言 关于消息中间件的应用场景,小伙伴们应该都耳熟能详了吧,比如经常提到的削峰填谷.分布式事务.异步业务处理.大数据分析等等,分布式消息队列成为其中比较关键的桥梁,也就意味着小伙伴们得掌握相关技能:当 ...