对数据集的shuffle处理需要设置相应的buffer_size参数,相当于需要将相应数目的样本读入内存,且这部分内存会在训练过程中一直保持占用。完全的shuffle需要将整个数据集读入内存,这在大规模数据集的情况下是不现实的,故需要结合设备内存以及Batch大小将TFRecord文件随机划分为多个子文件,再对数据集做local shuffle(即设置相对较小的buffer_size,不小于单个子文件的样本数)。

Shuffle和划分

下文以一个异常检测数据集(正负样本不平衡)为例,在生成第一批TFRecord时,我将正负样本分别写入单独的TFrecord文件以备后续在对正负样本有不同处理策略的情况下无需再解析example_proto。比如在以下代码中,我对正负样本有不同的验证集比例,并将他们写入不同的验证集文件。

import numpy as np
import tensorflow as tf
from tqdm.notebook import tqdm as tqdm # TFRecord划分
raw_normal_dataset = tf.data.TFRecordDataset("normal_16_256.tfrecords","GZIP")
raw_anomaly_dataset = tf.data.TFRecordDataset("anomaly_16_256.tfrecords","GZIP")
normal_val_writer = tf.io.TFRecordWriter(r'ex_1/'+'normal_val_16_256.tfrecords',"GZIP")
anomaly_val_writer = tf.io.TFRecordWriter(r'ex_1/'+'anomaly_val_16_256.tfrecords',"GZIP")
train_writer_list = [tf.io.TFRecordWriter(r'ex_1/'+'train_16_256_{}.tfrecords'.format(i),"GZIP") for i in range(SUBFILE_NUM+1)]
with tqdm(total=LEN_NORMAL_DATASET+LEN_ANOMALY_DATASET) as pbar:
for example_proto in raw_normal_dataset:
# 划分训练集和测试集
if np.random.random() > 0.99: # 正样本测试集的比例
normal_val_writer.write(example_proto.numpy())
else:
train_writer_list[np.random.randint(0,SUBFILE_NUM+1)].write(example_proto.numpy())
pbar.update(1) for example_proto in raw_anomaly_dataset:
# 划分训练集和测试集
if np.random.random() > 0.7: # 负样本测试集的比例
anomaly_val_writer.write(example_proto.numpy())
else:
train_writer_list[np.random.randint(0,SUBFILE_NUM+1)].write(example_proto.numpy())
pbar.update(1)
normal_val_writer.close()
anomaly_val_writer.close()
for train_writer in train_writer_list:
train_writer.close()

读取

raw_train_dataset = tf.data.TFRecordDataset([r'ex_1/'+'train_16_256_{}.tfrecords'.format(i) for i in range(SUBFILE_NUM+1)],"GZIP")
raw_train_dataset = raw_train_dataset.shuffle(buffer_size=100000).batch(BATCH_SIZE)
parsed_train_dataset = raw_train_dataset.map(map_func=map_func) raw_normal_val_dataset = tf.data.TFRecordDataset(r'ex_1/'+'normal_val_16_256.tfrecords',"GZIP")
raw_anomaly_val_dataset = tf.data.TFRecordDataset(r'ex_1/'+'anomaly_val_16_256.tfrecords',"GZIP")
parsed_nomarl_val_dataset = raw_normal_val_dataset.batch(BATCH_SIZE).map(map_func=map_func)
parsed_anomaly_val_dateset = raw_anomaly_val_dataset.batch(BATCH_SIZE).map(map_func=map_func)

TFRecord的Shuffle、划分和读取的更多相关文章

  1. Tensorflow 中(批量)读取数据的案列分析及TFRecord文件的打包与读取

    内容概要: 单一数据读取方式: 第一种:slice_input_producer() # 返回值可以直接通过 Session.run([images, labels])查看,且第一个参数必须放在列表中 ...

  2. 更加清晰的TFRecord格式数据生成及读取

    TFRecords 格式数据文件处理流程 TFRecords 文件包含了 tf.train.Example 协议缓冲区(protocol buffer),协议缓冲区包含了特征 Features.Ten ...

  3. Tensorflow中使用tfrecord方式读取数据-深度学习-周振洋

    本博客默认读者对神经网络与Tensorflow有一定了解,对其中的一些术语不再做具体解释.并且本博客主要以图片数据为例进行介绍,如有错误,敬请斧正. 使用Tensorflow训练神经网络时,我们可以用 ...

  4. Spark技术内幕:Stage划分及提交源码分析

    http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache. ...

  5. Spark技术内幕:Stage划分及提交源代码分析

    当触发一个RDD的action后.以count为例,调用关系例如以下: org.apache.spark.rdd.RDD#count org.apache.spark.SparkContext#run ...

  6. 第十二节,TensorFlow读取数据的几种方法以及队列的使用

    TensorFlow程序读取数据一共有3种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow图的起 ...

  7. TensorFlow中数据读取之tfrecords

    关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow ...

  8. tensorflow之数据读取探究(2)

    tensorflow之tfrecord数据读取 Tensorflow关于TFRecord格式文件的处理.模型的训练的架构为: 1.获取文件列表.创建文件队列:http://blog.csdn.net/ ...

  9. spark 笔记 15: ShuffleManager,shuffle map两端的stage/task的桥梁

    无论是Hadoop还是spark,shuffle操作都是决定其性能的重要因素.在不能减少shuffle的情况下,使用一个好的shuffle管理器也是优化性能的重要手段. ShuffleManager的 ...

随机推荐

  1. Python-100-Days-master

    跟着python100学习一下 100以内的素数 # 输出100以内的所有素数 # 想法:从1到100遍历,假设得到了i=17,那么此时从1到9遍历,如果找到了一个数用17能除尽则跳出循环 # 如果找 ...

  2. 6.Docker网络

    什么是 Docker网络 docker 不启动,默认网络情况 ens33 lo virbr0 在 CentOS7 的安装过程中如果有选择相关虚拟化的的服务安装系统后,启动网卡时会发现有一个以网桥连接的 ...

  3. 渗透:aircrack-ng

    ircrack- NG是一个完整的工具来评估Wi-Fi网络安全套件,功能包括: 监控:数据包捕获和导出数据到文本文件,以供第三方工具进一步处理. 攻击:通过数据包注入回放攻击,去认证,伪造接入点等. ...

  4. 前端js堆栈

    1.介绍创建数据的时候就会占用内容.内存主要开辟了两类空间1. 堆(进程,线程共享) 大小不固定,可随时增加不允许js直接访问堆内存存储引用类型数据按引用访问存储的值大小不定,可动态调整主要用来存放对 ...

  5. Centos7 安装 MPICH

    查看官网版本 https://www.mpich.org/downloads/ 最新的stable release是mpich 4.0.2,复制下载链接. 安装依赖 mpich需要系列依赖,如果不确定 ...

  6. 【freertos】008-内存管理

    前言 本章主要讲解内部存储空间(RAM)的管理. 详细分析heap5方案. 参考: 李柱明博客 https://freertos.blog.csdn.net/article/details/51606 ...

  7. 第06组 Alpha冲刺 (1/6)

    1.1 基本情况 队名:守护(发际)线程 组长博客:郝雷明 作业博客:郝雷明 组员人数:10 1.2 冲刺概况汇报 1. 郝雷明(组长) 过去两天完成了哪些任务 学习了微信开发平台的文档内容,熟悉微信 ...

  8. Java开发学习(一)----初识Spring及其核心概念

    一. Spring系统架构 1.1 系统架构图 Spring Framework是Spring生态圈中最基础的项目,是其他项目的根基. Spring Framework的发展也经历了很多版本的变更,每 ...

  9. 史上最全Spring Cloud Alibaba--Nacos教程(涵盖负载均衡、配置管理、多环境切换、配置共享/刷新、灰度、集群)

    能够实现Nacos安装 基于Nacos能实现应用负载均衡 能基于Nacos实现配置管理 配置管理 负载均衡 多环境切换 配置共享 配置刷新 灰度发布 掌握Nacos集群部署 1 Nacos安装 Nac ...

  10. ShardingSphere-proxy-5.0.0部署之分表实现(一)

    一.说明 环境准备:JDK8+     mysql 5.x 官网:https://shardingsphere.apache.org/ 下载地址:https://archive.apache.org/ ...