hive知识点总结

1.什么是HIVE?

  1.hive是hadoop生态圈的一个工具,提供一种结构化查询语言,可以查询HDFS或者其他文件系统上的文件。

2.hive操作:

  1.hive一次使用命令:hive -S -e "select * from mytable limit 3"; //临时应急使用,-S开启静默模式,去掉结果的OK 和timeTaken。

  2.从文件中执行hive查询:hive -f /path/to/file/file.sql

  3.用正则表达式筛选数据库: show databases like 'h.*';

  4.删除库:drop database if exists user; #默认hive 不允许删除表的库。要么先删除库中的表,要么在删除语句后面加上cascade

  5.拷贝表:create table if not exists mydb.table like mydb.table2;

  6.向表中装载数据:load data inpath '${env:HOME}'/california-employees'

           overwrite into table employees  #overwrite:如果分区目录不存在则创建

           partition (country = 'us',state ='ca'); #如果使用local关键字,表明从本地copy到目标路径,如果没有使用则是在分布式文件系统中进行转移。

3.hive中的特殊数据类型:map ,array,struct

  1.建表实例:create table emploees{

          name string,

          salary float,

          subordinates array<string>,

          deductions map<string,float>,

          address struct<street:string,city:string,state:string,zip:int>

        } row format delimited

         filelds terminated by '\001'   #\001 是^A的八进制数

         collection item terminated by '\002'  #\002 是^B的八进制数

         map keys terminated by '\003'    #\003 是^C的八进制数

         line terminated by '\n'

         stored as textfile;

4.hive的读时模式:

  1.读时模式:对于hive 要查询的数据,有很多种方法创建,修改,甚至损坏,因此hive 不会再数据加载时进行验证而是在数据查询时验证,即读时模式。

  2.如果模式和文件内容不匹配,那么用户将会看到很多null。

5.HQL数据定义:

  1.hive特点:不支持行级插入,更新和删除操作。不支持事务。

7.表的分类:

  1.管理表

    1.hive或多或少管理表周期

    2.删除管理表时,hive也会删除这个表的数据

  2.外部表:

    1.数据源来自于三方,比如hdfs

    2.删除表只会删除元数据,而不会删除数据

    3.建表实例:create external table if not exists stocks(  # external 表示为外部表

            exchange string,

            symbol string,

            price_open string)

            row format delimited fields terminated by ","

            location '/data/stocks';   #location表示数据路径

  3.分区表:

    1.将数据以一种符合逻辑的方式进行组织,比如分层存储。

    2.建表实例:create table exployees(

            name string,

            salary float)

            parttioned by (country string, state string);

  4.外部分区表:

    1.管理大量生产数据最为常见,比如日志文件分析。

    2.建表实例: create external table if not exists log_messages(

            hms int,

            sevverity string,

            server string,

            process_id int,

            message string)

            partitioned by (year int,month int,day int)

            row format delimited fields terminated by '\t';

8.聚合函数:(部分)

  1.count(*):计算总行数,包括null行

  2.count(expr):计算提供expr表达式非null的行数

  3.sum(distinct col):计算排重后的和

  4.set hive.map.aggr=true:提高聚合性能,需要更多的内存

9.表生成函数:

  1.explode(Array array) :返回0到多行结果,每一行对应array数组的每一个元素

  2.explode(Map map):同理,每行对应每个map键值对

  3.inline(ARRAY<STRUCT[,STRUCT]>):将结构体数组提取出来并插入表中。
  4.json_tuple(string json_Str, p1,p2 ,..,pn):本函数可以接受多个标签,对json字符串进行处理。

10.case when then:

  1.用于单列查询结果:select name,salary,

              case

                when salary <50000.0 then "low"

                when salary >=50000.0 and salary <70000.0 then "middle"

                when salary >=70000.0 and salary <1000000.0 then "high"

                else "very high"

              end as bracket from employees;

11.like & rlike:

  1.like:通过字符串开头或结尾,以及特定的字符串进行匹配。

  2.rlike:可以通过java正则来匹配条件。

12.join语句:

  1.inner join:只有两个链接的表都存在与连接匹配的数据才会被保留下来

  2.join优化:当对三个或更多表join时,如果连接关键词相同的话,哪么只会产生一个MR job。

        hive同时假定查询最后一张表是最大表,再对每行记录进行连接时,会试图将其他表缓存下来,然后扫描最后那张表进行计算,因此需要保证查询的表大小从左到右是依次增加的。

  3.left outer join:将左表符合where子句的所有记录返回,右表没有符合的列的值为null。

  4.outer join:外链接会忽略掉分区过滤条件

  5.right outer join :会返回右表符合where语句的记录,左表匹配不上的用null。

  6.full outer join :完全外链接,返回所有符合where条件的记录,任何不满足用null。

  7.left semi-join:左半开连接,返回左表记录,前提是其记录对于右边满足on的判定

    semi-join 通常比inner join效率高,因为对于左表的一条指定的记录,右表一旦找到对应的

    就会停止扫描。

  8.笛卡尔积join:表示左表行数乘以右表行数产生的数据。

  9.map-side join:如果所有表中只有一张小表,那么在最大的表通过map时将小表完全

    放到内存中,可以在map端执行连接。提升hive性能。

    在hive 0.7以后需要设置:set hive。auto。convert。join =true

13.order by & sort by

  1.order by :全局排序,所有数据通过一个reducer处理,耗时长。

  2.sort by :局部排序,对每个reduce的数据进行排序,方便后面的全局排序。

14.union all

  1.可以将两个表或者多个表进行合并。每个union子查询必须拥有相同列。

  2.union也可以用于同一个原表数合并。

15.使用视图来降低复杂查询:

  1.create view shorter_join as select * from people join cart on (cart.people_id =people.id) where firstname ="join";

    select lastname from short_join where id =3;

16.索引:

  1.建立索引:crate index employees_index

        on table employees (country)

        as 'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler' # as 指定; 索引处理器

        with deferred rebuild

        idxproperties ('creartor' = 'me' ,'created_at' = 'some_time')

        in table employees_index_table

        partitioned by (country, name);

  2.Bitmap索引:create index employees_index

          on table employees(country)

          as 'bitmap'

          with deferred rebuild

          idxproperties ('creator' = 'me' , 'created_at' = 'some_time')

          in table employess_index_table

          partitioned by (country,name);

  3.重建索引:如果指定了deferred rebuild ,那么新索引将呈现空白状态,任何时候都可以进行索引创建或者

      使用alter index重建。

    alter index employees_index

     on table employees

      partioned by(country ='us') rebuild;

  4.显示索引:show formated index on employees;

  5.删除索引:drop if exists employees_index on table empolyees;

17.hive优化:

  1.explain:帮助我们学习hive是如何将hql转化为MapReduce任务的。

  2、explain extended:可以产生更多的输出信息。

  3.并行执行:hive会将一个任务切分为多个阶段,可以是MapReduce阶段,抽样阶段,合并阶段,limit阶段等,默认hive一次只会执行一个阶段,而特定的job可能包含众多阶段,这些阶段可能并非相互依赖,也就是说有些阶段是可以并行执行的,这样可以使整个执行时间变短。通过设置参数hive.exec.parallel值为true来设定。如果并行度增加,那么集群资源的利用率就会上升。

  4.严格模式:hive.mapred.mode 的值为true,禁止三类查询

    1.对于分区表,除非where语句中包含分区字段过滤条件来限制数据范围,否则不允许执行。即不允许用户扫描所有分区表,原因是耗费巨大资源。

    2.对于order by语句的查询,必须要求使用limit语句。因为order by 为了执行排序过程会将所有的数据放到一个reducer去处理,强制增加limit会防止reducer额外执行更长时间。

    3.限制笛卡尔积的查询。

  5.调节mapper和reducer的数量:mapper和reducer太多,造成不必要的开销,太少则没有充分利用集群的并行度。

    1.利用dfs -count命令来显示计算数据量大小,属性hive.exec.reducer.bytes.per.reducer默认为1GB。通过调整为750MB,hive就会使用4个reducer。

    2.hive的默认reducer为3,可以设置mapred.reduce.tasks 的值。

    3.当集群处理大任务时,为了控制资源利用情况,需要控制hive.exec.reducers.max。一个hadoop集群的map和reduce槽数是有限的,某个大的job会消耗所有的槽会导致其他job无法执行,

    通过设置hive.exec.reducers.max,阻止某个job消耗过多资源,对于这个属性值有个经验公式:(集群总reduce槽数*1.5)/执行中查询的平均个数。

  6.jvm重用:hadoop默认使用派生的JVM来执行map和reduce任务。JVM的启动会造成很大开销,尤其是job中会包含数百上千的task时,JVM重用会让JVM实例在一个job内重用n次,n的值可以在

      mapred.site.xml中配置:<name>mapred.job.reuse.jvm.num.tasks</name>

                 <value>10</value>

      缺点:开启JVM重用会一直占用使用的task槽数,以便进行重用,直到任务完成后释放。

18.hive函数

  1.hive自带UDF:

    1.show functions:abs ,acos,and,array,...

  2.UDF:用户自定义标准函数:输入一行的一到多列数据,输出一个值。

  3.UDAF:用户自定义聚合函数:接受一行到多行的零到多个列,输出一个值。

  4.UDTF:表生成函数:接受多行多列,输出多行多列。

hive知识点总结的更多相关文章

  1. 大白话详解大数据hive知识点,老刘真的很用心(1)

    前言:老刘不敢说写的有多好,但敢保证尽量用大白话把自己复习的知识点详细解释出来,拒绝资料上的生搬硬套,做到有自己的了解! 01 hive知识点(1) 第1点:数据仓库的概念 由于hive它是基于had ...

  2. 大白话详解大数据hive知识点,老刘真的很用心(2)

    前言:老刘不敢说写的有多好,但敢保证尽量用大白话把自己复习的内容详细解释出来,拒绝资料上的生搬硬套,做到有自己的了解! 1. hive知识点(2) 第12点:hive分桶表 hive知识点主要偏实践, ...

  3. 大白话详解大数据hive知识点,老刘真的很用心(3)

    前言:老刘不敢说写的有多好,但敢保证尽量用大白话把自己复习的内容详细解释出来,拒绝资料上的生搬硬套,做到有自己的了解! 1. hive知识点(3) 从这篇文章开始决定进行一些改变,老刘在博客上主要分享 ...

  4. Hive知识点

    1.Hive是一种建立在Hadoop文件系统上的数据仓库架构,并对存储在HDFS中的数据进行分析和管理:(也就是说对存储在HDFS中的数据进行分析和管理,我们不想使用手工,我们建立一个工具把,那么这个 ...

  5. Spark访问与HBase关联的Hive表

    知识点1:创建关联Hbase的Hive表 知识点2:Spark访问Hive 知识点3:Spark访问与Hbase关联的Hive表 知识点1:创建关联Hbase的Hive表 两种方式创建,内部表和外部表 ...

  6. IDEA SSM后端框架入门

    SSM框架 如果对SSM一无所知,推荐先去看这本书,可以在微信读书上看. 知识点 控制器返回对象时,对象需要有getter,setter方法,才能自动转化为json数据类型. 一个服务管理者对应多个业 ...

  7. 大数据核心知识点:Hbase、Spark、Hive、MapReduce概念理解,特点及机制

    今天,上海尚学堂大数据培训班毕业的一位学生去参加易普软件公司面试,应聘的职位是大数据开发.面试官问了他10个问题,主要集中在Hbase.Spark.Hive和MapReduce上,基础概念.特点.应用 ...

  8. 3. Hive相关知识点

    以下是阅读<Hive编程指南>后整理的一些零散知识点: 1. 有时候用户需要频繁执行一些命令,例如设置系统属性,或增加对于Hadoop的分布式内存,加入自定的Hive扩展的Jave包(JA ...

  9. Hive中知识点

    hive的最新学习资料:http://www.cnblogs.com/qingyunzong/p/8707885.html hive的参数设置大全:https://cwiki.apache.org/c ...

  10. hive 安装、知识点

    hive 查询语句: 语句 含义 show database; 或 show schemas; 查看数据库 show tables; hive显示所有表 set; 查看hive配置信息 问题:load ...

随机推荐

  1. 通过Docker启动Solace,并在Spring Boot通过JMS整合Solace

    1 简介 Solace是一个强大的实时性的事件驱动消息队列.本文将介绍如何在Spring中使用,虽然代码使用的是Spring Boot,但并没有使用相关starter,跟Spring的整合一样,可通用 ...

  2. RAM算法原理

    1 应用场景 信道的不对称性和信道的高波动是移动环境中无线信道的两个显著特征.因此,当在车辆网络等移动环境中使用IEEE 802.11设备时,有一个能够处理这些问题的有效速率自适应方案至关重要.RAM ...

  3. Mybatis获取插入值的ID

    需求: 在后台做多次插入的时候,需要使用返回ID,然而普通的操作是无法做到的 Mybatis可以在insert的标签 上加上 keyProperty='id' useGeneratedKeys=&qu ...

  4. 电商网站Web自动化测试实战( 编写京东搜索脚本python+selenium框架)

    电商网站Web自动化测试实战( 编写京东搜索脚本) 1,打开京东页 京东首页地址:https://www.jd.com/,故进入京东首页如下: 2,打开浏览器开发者模式 定位元素前需先打开浏览器开发者 ...

  5. 怎么在GridView中限制显示字数

    三种方法可以实现,前两种是C#代码实现(原理一样),第三种是CSS实现. 1.cs代码中:GridView的RowDataBound中对想做处理的项做Remove()字符串截取. 2.aspx页面中: ...

  6. 注释、input()、运算符、组织结构(顺序、选择、循环)

    注释 单行注释 # 多行注释 将三对引号之间的为多行注释 ''' ''' 中文编码的声明注释 #coding:gbk input()函数 接受来自用户的输入 返回值是str 值的存储 使用=对输入的值 ...

  7. JZOJ 1077. 【GDKOI2006】防御力量

    \(\text{Solution}\) 首先这个题目描述得不清不楚 反正做法是过 \(A\) 城引一条直线,算出直线两侧点数的 \(min\) 找到最优直线,即 \(min\) 最小的 那么重点在判断 ...

  8. 前后端分离项目创建项目详细过程项、目需求分析、pip换源、创建虚环境、后端目录调整以及解决问题

    引言,本项目是前后端分离的,前端用Vue2 后端用Django,后台管理部分是通过simpleUI完成的项目,项目名称为路飞,是商城类(知识付费项目).本篇文章主要讨论一个前后端分离的项目第一步怎么做 ...

  9. 浅拷贝导致的bug

    目录 深拷贝与浅拷贝区别 hutool BeanUtil.copyProperties 浅拷贝问题重现 实现深拷贝的一些工具 深拷贝与浅拷贝区别 在 Java 中,除了基本数据类型(元类型)之外,还存 ...

  10. vulnhub靶场之WORST WESTERN HOTEL: 1

    准备: 攻击机:虚拟机kali.本机win10. 靶机:Worst Western Hotel: 1,下载地址:https://download.vulnhub.com/worstwesternhot ...