hdu5197 DZY Loves Orzing(FFT+分治)

hdu

题目描述:一个n*n的矩阵里填入1~n^2的数,要求每一排从前往后能看到a[i]个数(类似于身高阻挡视线那种),求方案数。

思路:

考虑往一排里填入n个数。

经过简单推导发现正好有j个能被看到的方案数答案是$\Sigma_{i=1}^{n}(x+(i-1))$的$x^{j}$项系数。

这个用分治FFT搞一搞就会变成$nlog^{2}n$的了。

之后再乘上一个$\frac{(n^{2})!}{(n!)^{n}}$

woc这什么大数。。。

然而$n^2$超过模数的时候答案就是0了。

所以答案不为0的n被限制在了不到32000。

于是NTT也跑得快多了。

上面那个$(n^{2})!$分块打表吧,或者你想写快速阶乘也没人拦你

  1 #include<cstdio>
2 #include<algorithm>
3 #include<cstring>
4 using namespace std;
5 typedef long long lint;
6 const lint mo=999948289,G=13;
7 const int border=32768,N=40069,maxn=32000;
8 lint fpow(lint a,lint p)
9 {
10 lint ret=1;
11 while(p)
12 {
13 if(p&1ll) (ret*=a)%=mo;
14 (a*=a)%=mo;
15 p>>=1;
16 }
17 return ret;
18 }
19
20 lint fac[N],ifac[N];
21 lint wg[N],iwg[N];
22 lint ta[N],tb[N],tc[N];
23 int inv[N];
24 void ntt(lint *a,int len,int tp)
25 {
26 lint ilen=fpow(len,mo-2);
27 for(int i=0;i<len;i++) if(i<inv[i]) swap(a[i],a[inv[i]]);
28 for(int i=1;i<len;i<<=1)
29 {
30 lint w0=(~tp)?wg[i]:iwg[i];
31 for(int j=0;j<len;j+=(i<<1))
32 {
33 lint w=1;
34 for(int k=0;k<i;k++,(w*=w0)%=mo)
35 {
36 lint w1=a[j+k],w2=w*a[j+k+i]%mo;
37 a[j+k]=(w1+w2)%mo,a[j+k+i]=(w1-w2+mo)%mo;
38 }
39 }
40 }
41 if(tp==-1) for(int i=0;i<len;i++) (a[i]*=ilen)%=mo;
42 }
43 lint dp[N];
44 lint pa[20][2][N];
45 void clr(int len)
46 {
47 memset(ta,0,len*8);
48 memset(tb,0,len*8);
49 memset(tc,0,len*8);
50 }
51 void work(int l,int r,int dep=0,int pos=0)
52 {
53 if(l==r){pa[dep][pos][1]=1,pa[dep][pos][0]=(lint)l-1;return;}
54 int mm=l+r>>1;
55 int n=r-l+2;
56 for(int i=0;i<n;i++) pa[dep+1][0][i]=pa[dep+1][1][i]=0;
57 work(l,mm,dep+1,0),work(mm+1,r,dep+1,1);
58 int len=1,pl=0;
59 while(len<n) len<<=1,pl++;
60 clr(len);
61 for(int i=1;i<len;i++) inv[i]=(inv[i>>1]>>1)|((i&1)<<(pl-1));
62 for(int i=0;i<n;i++) ta[i]=pa[dep+1][0][i],tb[i]=pa[dep+1][1][i];
63 ntt(ta,len,1),ntt(tb,len,1);
64 for(int i=0;i<len;i++) tc[i]=ta[i]*tb[i]%mo;
65 ntt(tc,len,-1);
66 for(int i=0;i<len;i++) pa[dep][pos][i]=tc[i];
67 }
68
69
70 lint calc(lint x);
71 int n,a[100069];
72 int main()
73 {
74 fac[0]=ifac[0]=1;
75 for(int i=1;i<=maxn;i++) fac[i]=fac[i-1]*i%mo,ifac[i]=fpow(fac[i],mo-2);
76 for(int i=1;i<border;i<<=1) wg[i]=fpow(G,(mo-1)/(i<<1)),iwg[i]=fpow(wg[i],mo-2);
77 while(~scanf("%d",&n))
78 {
79 for(int i=1;i<=n;i++) scanf("%d",&a[i]);
80 if(n>=maxn){puts("0");continue;}
81 memset(pa[0][0],0,sizeof(pa[0][0]));
82 work(1,n);
83 lint ans=1;
84 ans*=calc(n);
85 (ans*=fpow(ifac[n],n))%=mo;
86 for(int i=1;i<=n;i++) (ans*=pa[0][0][a[i]])%=mo;
87 printf("%lld\n",ans);
88 }
89 return 0;
90 }
91
92 lint bfac[160]={
93 1,902199578,655434774,588857280,495770768,69882273,553982098,334078355,33146971,638472211,758245769,819694289,212913989,674505681,621807178,52420569,535922477,808220737,910946087,665159051,208303589,824486272,851100796,36810321,352031293,146240630,950654769,83962140,688846899,876526361,855642854,941799736,79240392,127370706,182824403,918730448,7023806,763878567,185845423,313214126,285253420,693669080,371386848,478395563,890609360,658191029,506004018,91639581,780064049,914814533,848366675,816348053,589401095,509135319,5446319,31619815,253732202,31857169,381860443,165388954,340902365,960303088,888954496,990221261,563929977,876772121,287079597,609490658,652825564,188993794,549908577,448482523,951503233,573959686,967072042,138776107,103551474,507659875,978747064,744346128,6336599,284817804,56458444,949826314,426241014,131445497,844320792,317915054,729308605,623307135,415416377,694294158,132884549,468178276,709909378,215890898,517268673,756318464,591277985,591506763,315367468,727640178,83321953,520348269,358779796,726705701,333860770,574957987,792831525,568945082,894644404,585412875,460795027,380631820,408052670,276231384,641853065,627050439,424695359,849416232,257485155,78105895,255310610,546026921,968605310,537749882,484855581,889099301,930219111,978770851,22465690,316568861,457634470,176979627,346624108,121259373,302342099,722399773,64910873,521979194,576421397,629834183,904179107,507024536,317861768,202275207,572048958,636515142,125373754,68190273,464124136,875197733,313248262,908784630,959938689,532154720,996633237,161891031,288552800,0};
94 lint calc(lint x)
95 {
96 lint b=x/200;
97 lint ret=bfac[b];
98 lint g=b*200+1,np=1ll*b*b*40000;
99 lint pp=x*x;
100 while(np<pp){np++;(ret*=np)%=mo;}
101 return ret;
102 }

hdu5197 DZY Loves Orzing(FFT+分治)的更多相关文章

  1. Codeforces #254 div1 B. DZY Loves FFT 暴力乱搞

    B. DZY Loves FFT 题目连接: http://codeforces.com/contest/444/problem/B Description DZY loves Fast Fourie ...

  2. CF 444B(DZY Loves FFT-时间复杂度)

    B. DZY Loves FFT time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  3. [BZOJ3569]DZY Loves Chinese II(随机化+线性基)

    3569: DZY Loves Chinese II Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1515  Solved: 569[Submit][S ...

  4. 「CF446C」 DZY Loves Fibonacci Numbers

    「CF446C」 DZY Loves Fibonacci Numbers 这里提供一种优美的根号分治做法. 首先,我们考虑一种不太一样的暴力.对于一个区间加斐波那契数的操作 \([a,b]\),以及一 ...

  5. CF444C. DZY Loves Colors[线段树 区间]

    C. DZY Loves Colors time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  6. Codeforces444C DZY Loves Colors(线段树)

    题目 Source http://codeforces.com/problemset/problem/444/C Description DZY loves colors, and he enjoys ...

  7. CodeForces445A DZY Loves Chessboard

    A. DZY Loves Chessboard time limit per test 1 second memory limit per test 256 megabytes input stand ...

  8. BZOJ 3309: DZY Loves Math

    3309: DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 761  Solved: 401[Submit][Status ...

  9. CF 444C DZY Loves Physics(图论结论题)

    题目链接: 传送门 DZY Loves Chemistry time limit per test1 second     memory limit per test256 megabytes Des ...

随机推荐

  1. systemverilog中奇怪的语法

    1.->运算符 expression_a->expression_b其实等效于(!expression_a || expression_b),systemverilog中利用 || 运算的 ...

  2. interface中setup_time和hold_time

    interface中的setup_time和hold_time input:约束input信号提前T时间采样,然后在时钟沿更新到input信号上. output:约束output信号,在时钟沿T时间后 ...

  3. CentOS8上安装MySQL

    没有选择Win10上安装MySQL,个人感觉比较傻瓜式.同时相对Win10操作系统,个人更熟悉Unix/Linux操作系统,所以选择在CentOS8上安装MySQL数据库. 还是熟悉的yum安装,前提 ...

  4. 针对Office宏病毒的高级检测

    前言 攻击者可能发送带有恶意附件的钓鱼邮件,诱导受害者点击从而获取对方的系统控制权限 期间会借助 Atomic 工具完成攻击复现,再对具体的过程细节进行分析取证,然后深入研究.剖析其行为特征 最后输出 ...

  5. 每日一题:codeforces题解

    题目 B. Peculiar Movie Preferences time limit per test 2 seconds memory limit per test 512 megabytes i ...

  6. BI工具有多重要?凭什么得到各类企业的热烈追捧?

    近年来,应用BI工具的企业越来越多,企业对BI工具的重视说明企业了解.认识到了数据的价值.数据分析工具已经渐渐成为企业日常经营管理活动中不可或缺的一项重要工作内容.但是你知道企业应该如何挑选BI工具吗 ...

  7. Java笔记——循环语句

    Java笔记--循环语句     1. while语句 规律: 1. 首先计算表达式的值. 2. 若表达式为真,则执行循环语法,直至表达式为假,循环结束.   while(表达式) 语句; 例如: i ...

  8. Java高级部分概要笔记

    复习 多线程 程序.进程.线程的概念.区别 并行.并发 创建线程的四种方式:继承Thread.实现Runnable接口.实现Callable接口.线程池 线程的生命周期 线程的同步方式,三种:同步方法 ...

  9. linux中rlwrap安装

    转至:https://www.cnblogs.com/hw-1015/p/6601294.html 在linux上使用sqlplus命令的时候,上下键.空格键.删除键都不能使用,非常麻烦.安装了rlw ...

  10. Linux常用文件权限命令详解

    pwd pwd命令用于获取当前工作目录的绝对路径. 使用示例: pwd 效果如下图: cd cd命令用于切换工作目录. 使用示例: cd 万猫学社/ 效果如下图: 其中在路径表示时, 一个半角句号(. ...