sklearn学习笔记之线性回归
AI时代扑面而来,在大众面对ChatGPT和Sora发出无数惊叹号的时候,我决定不再只当一个AI时代的API调用者,而是去学习机器学习技术本身。
刚好公司也要往人工智能方向发展的计划,于是我开始从基础学习,发现了一个宝藏开源机器学习库:scikit-learn。
scikit-learn文档健全,社区生态非常完善,这也是我选择它进行学习的原因之一。它不仅提供了大量机器学习的算法实现和强大模型,还为开发者提供了数据生成和处理的函数,方便针对中小型数据(千万级以下数据)进行预测和分析。
机器学习根据数据的类型和学习任务不同大体分为监督学习、非监督学习、半监督学习、强化学习。
监督学习:
在监督学习中,算法接收到带有标签(或者目标)的训练数据,它的任务是学习一个从输入到输出的映射关系,以便对未标记的数据进行预测或分类。因此,监督学习的关键特征是训练数据集包含输入和对应的期望输出。这种期望输出可以是类别标签(分类任务)或连续值(回归任务)。
非监督学习:
在非监督学习中,算法接收到的训练数据没有任何标签信息,它的任务是从数据中发现隐藏的结构或模式。非监督学习的目标通常包括聚类(将数据划分为不同的组别)、降维(减少数据的维度以便更好地可视化或压缩数据)、关联规则挖掘等。
半监督学习:
半监督学习结合了监督学习和非监督学习的元素。在这种情况下,数据集中只有一小部分数据带有标签,而大多数数据是未标记的。半监督学习的目标是利用标记数据和未标记数据来提高模型的性能。
强化学习:
强化学习与监督学习和非监督学习有所不同,它涉及到代理与环境的交互,并根据执行的动作而获得的奖励或惩罚来学习最优策略。强化学习的目标是使代理在特定任务中获得最大的长期奖励。
最简单的一种回归任务就是线性回归,我就从这个学习任务开始入手。
线性回归就是一种分析方法,用来看看输入特征和输出目标之间是不是有线性关系。比如一个人的体重增加,和他每天摄入的能量以及消耗的能量有线性关系。
那么进行编程时间,首先安装scikit-learn库,可以使用pip命令如下:
pip install scikit-learn
下面是一个线性回归的简单案例:
from sklearn.linear_model import LinearRegression
import numpy as np
# Sample data
X = np.array([[1], [2], [3], [4], [5]]) # Input feature
y = np.array([2, 3.5, 2.8, 4.6, 5.2]) # Output target
# Create a linear regression model
model = LinearRegression()
# Fit the model to the data
model.fit(X, y)
# Make predictions
X_new = np.array([[6], [7]]) # New data for prediction
predictions = model.predict(X_new)
print("Predictions:", predictions)
执行这段代码,输出值为:
Predictions: [5.87 6.62]
看起来似乎有点意思,但是我们怎么才知道这个预测是否准确呢?
sklearn学习笔记之线性回归的更多相关文章
- sklearn学习笔记之简单线性回归
简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误 ...
- CNN学习笔记:线性回归
CNN学习笔记:Logistic回归 线性回归 二分类问题 Logistic回归是一个用于二分分类的算法,比如我们有一张图片,判断其是否为一张猫图,为猫输出1,否则输出0. 基本术语 进行机器学习,首 ...
- TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现
此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...
- sklearn学习笔记3
Explaining Titanic hypothesis with decision trees decision trees are very simple yet powerful superv ...
- sklearn学习笔记2
Text classifcation with Naïve Bayes In this section we will try to classify newsgroup messages using ...
- sklearn学习笔记1
Image recognition with Support Vector Machines #our dataset is provided within scikit-learn #let's s ...
- Machine Learning 学习笔记 (1) —— 线性回归与逻辑回归
本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 梯度下降法 (Gradien ...
- sklearn学习笔记
用Bagging优化模型的过程:1.对于要使用的弱模型(比如线性分类器.岭回归),通过交叉验证的方式找到弱模型本身的最好超参数:2.然后用这个带着最好超参数的弱模型去构建强模型:3.对强模型也是通过交 ...
- sklearn学习笔记(一)——数据预处理 sklearn.preprocessing
https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standar ...
- sklearn学习笔记之岭回归
岭回归 岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息.降低精度为代价获得回归系数更为符合实际.更可靠的回归方法,对病 ...
随机推荐
- [转帖]TiDB 数据库统计表的大小方法
简介:TiDB统计表的大小,列出了一些方法: 1.第一种的统计方式: 基于统计表 METRICS_SCHEMA.store_size_amplification 要预估 TiDB 中一张表的大小,你可 ...
- [转帖]使用 mydumper/loader 全量导入数据
数据迁移 mydumper 是一个更强大的数据迁移工具,具体可以参考 https://github.com/maxbube/mydumper. 我们使用 mydumper 从 MySQL 导出数据,然 ...
- [转帖]setsockopt(setsockopt的使用方法及注意事项)
http://xingzuo.aitcweb.com/9156453.html 1. setsockopt简介 setsockopt是一个系统调用函数,用于设置套接字选项.套接字是指通信的两个端点之间 ...
- [转帖]IO多路复用的三种机制Select,Poll,Epoll
I/O多路复用(multiplexing)的本质是通过一种机制(系统内核缓冲I/O数据),让单个进程可以监视多个文件描述符,一旦某个描述符就绪(一般是读就绪或写就绪),能够通知程序进行相应的读写操作 ...
- CentOS7 RPM离线安装PG12的办法
1. 先需要下载相应的rpm包 地址 https://pkgs.org/search/?q=postgresql12 一般至少要下载如下四个包 postgresql12-12.3-1PGDG.rhel ...
- Codeforces round 919 (div2)
Problem - A - Codeforces 暴力枚举 就可以: #include <bits/stdc++.h> #define int long long using namesp ...
- 2023年了,做SEO还有必要吗?
作者:京东科技 吴磊 搜索引擎工作原理 在搜索引擎网站的后台会有一个非常庞大的数据库,里面存储了海量的关键词,而每个关键词又对应着很多网址,这些网址是被称之为"搜索引擎蜘蛛"或&q ...
- element-ui表格展开行每次只能展开一行
element-ui表格展开行每次只能展开一行 <template> <el-table :data="tableData" :expand-row-keys=& ...
- 原生js中offsetTop, offsetLeft与offsetParent的详细讲解
简单说下:offsetTop offsetTop: 为只读属性. 返回的是一个数字. 它返回当前元素相对于其 offsetParent 元素的顶部内边距的距离. 它等价于offsetTop==> ...
- uni-app 顶部配置搜索框和左右图标
顶部的图标只支持本地图片哈,所以你要将阿里巴巴上的图标下载到本地, 然后只要XXX.ttf这个文件就行了 然后放在static这个文件中 在pages.json中fontSrc进行引入. text:使 ...