机器学习基础

下图就是在训练神经网络用到的基本方法:(尝试这些方法,可能有用,可能没用)

这是在训练神经网络时用到地基本方法,初始模型训练完成后,首先要知道算法的偏差高不高,如果偏差较高,试着评估训练集或训练数据的性能。如果偏差的确很高,甚至无法拟合训练集,那么要做的就是选择一个新的网络,比如含有更多隐藏层或者隐藏单元的网络,或者花费更多时间来训练网络,或者尝试更先进的优化算法。

一会儿会看到许多不同的神经网络架构,或许能找到一个更合适解决此问题的新的网络架构,加上括号,因为其中一条就是必须去尝试,可能有用,也可能没用,不过采用规模更大的网络通常都会有所帮助,延长训练时间不一定有用,但也没什么坏处。训练学习算法时,会不断尝试这些方法,直到解决掉偏差问题,这是最低标准,反复尝试,直到可以拟合数据为止,至少能够拟合训练集。

如果网络足够大,通常可以很好的拟合训练集,只要能扩大网络规模,如果图片很模糊,算法可能无法拟合该图片,但如果有人可以分辨出图片,如果觉得基本误差不是很高,那么训练一个更大的网络,就应该可以……至少可以很好地拟合训练集,至少可以拟合或者过拟合训练集。一旦偏差降低到可以接受的数值,检查一下方差有没有问题,为了评估方差,要查看验证集性能,能从一个性能理想的训练集推断出验证集的性能是否也理想,如果方差高,最好的解决办法就是采用更多数据,如果能做到,会有一定的帮助,但有时候,无法获得更多数据,也可以尝试通过正则化来减少过拟合。有时候不得不反复尝试,但是,如果能找到更合适的神经网络框架,有时它可能会一箭双雕,同时减少方差和偏差。如何实现呢?想系统地说出做法很难,总之就是不断重复尝试,直到找到一个低偏差,低方差的框架,这时就成功了。

有两点需要大家注意:

第一点,高偏差和高方差是两种不同的情况,通常会用训练验证集来诊断算法是否存在偏差或方差问题,然后根据结果选择尝试部分方法。举个例子,如果算法存在高偏差问题,准备更多训练数据其实也没什么用处,至少这不是更有效的方法,所以大家要清楚存在的问题是偏差还是方差,还是两者都有问题,明确这一点有助于选择出最有效的方法。

第二点,在机器学习的初期阶段,关于所谓的偏差方差权衡的讨论屡见不鲜,原因是能尝试的方法有很多。可以增加偏差,减少方差,也可以减少偏差,增加方差,但是在深度学习的早期阶段,没有太多工具可以做到只减少偏差或方差却不影响到另一方。但在当前的深度学习和大数据时代,只要持续训练一个更大的网络,只要准备了更多数据,那么也并非只有这两种情况,假定是这样,那么,只要正则适度,通常构建一个更大的网络便可以,在不影响方差的同时减少偏差,而采用更多数据通常可以在不过多影响偏差的同时减少方差。这两步实际要做的工作是:训练网络,选择网络或者准备更多数据,现在有工具可以做到在减少偏差或方差的同时,不对另一方产生过多不良影响。觉得这就是深度学习对监督式学习大有裨益的一个重要原因,也是不用太过关注如何平衡偏差和方差的一个重要原因,但有时有很多选择,减少偏差或方差而不增加另一方。最终,会得到一个非常规范化的网络。

神经网络优化篇:机器学习基础(Basic Recipe for Machine Learning)的更多相关文章

  1. 斯坦福大学公开课机器学习:advice for applying machine learning | diagnosing bias vs. variance(机器学习:诊断偏差和方差问题)

    当我们运行一个学习算法时,如果这个算法的表现不理想,那么有两种原因导致:要么偏差比较大.要么方差比较大.换句话说,要么是欠拟合.要么是过拟合.那么这两种情况,哪个和偏差有关.哪个和方差有关,或者是不是 ...

  2. Andrew Ng机器学习课程11之使用machine learning的建议

    Andrew Ng机器学习课程11之使用machine learning的建议 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 2015-9-28 艺少

  3. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计

    Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...

  4. 机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)

    朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/6014 ...

  5. 轻松看懂机器学习十大常用算法 (Machine Learning Top 10 Commonly Used Algorithms)

    原文出处: 不会停的蜗牛    通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题. 每个算法都看了 ...

  6. 斯坦福大学公开课机器学习: advice for applying machine learning | deciding what to try next(revisited)(针对高偏差、高方差问题的解决方法以及隐藏层数的选择)

    针对高偏差.高方差问题的解决方法: 1.解决高方差问题的方案:增大训练样本量.缩小特征量.增大lambda值 2.解决高偏差问题的方案:增大特征量.增加多项式特征(比如x1*x2,x1的平方等等).减 ...

  7. 斯坦福大学公开课机器学习:advice for applying machine learning | model selection and training/validation/test sets(模型选择以及训练集、交叉验证集和测试集的概念)

    怎样选用正确的特征构造学习算法或者如何选择学习算法中的正则化参数lambda?这些问题我们称之为模型选择问题. 在对于这一问题的讨论中,我们不仅将数据分为:训练集和测试集,而是将数据分为三个数据组:也 ...

  8. 斯坦福大学公开课机器学习:advice for applying machine learning - deciding what to try next(设计机器学习系统时,怎样确定最适合、最正确的方法)

    假如我们在开发一个机器学习系统,想试着改进一个机器学习系统的性能,我们应该如何决定接下来应该选择哪条道路? 为了解释这一问题,以预测房价的学习例子.假如我们已经得到学习参数以后,要将我们的假设函数放到 ...

  9. 斯坦福大学公开课机器学习:advice for applying machine learning | learning curves (改进学习算法:高偏差和高方差与学习曲线的关系)

    绘制学习曲线非常有用,比如你想检查你的学习算法,运行是否正常.或者你希望改进算法的表现或效果.那么学习曲线就是一种很好的工具.学习曲线可以判断某一个学习算法,是偏差.方差问题,或是二者皆有. 为了绘制 ...

  10. 斯坦福大学公开课机器学习: advice for applying machine learning | regularization and bais/variance(机器学习中方差和偏差如何相互影响、以及和算法的正则化之间的相互关系)

    算法正则化可以有效地防止过拟合, 但正则化跟算法的偏差和方差又有什么关系呢?下面主要讨论一下方差和偏差两者之间是如何相互影响的.以及和算法的正则化之间的相互关系 假如我们要对高阶的多项式进行拟合,为了 ...

随机推荐

  1. 如何通过拼多多订单API接口获取订单详情

    要获取拼多多订单详情,可以使用以下接口: 1. API名称:pdd.order.detail.get 接口说明:此接口用于查询某个订单的详情信息. API文档地址:前往注册 调用该接口需要提供以下参数 ...

  2. 代码随想录算法训练营第二十九天| 491.递增子序列 46.全排列 47.全排列 II

      491.递增子序列 卡哥建议:本题和大家刚做过的 90.子集II 非常像,但又很不一样,很容易掉坑里.  https://programmercarl.com/0491.%E9%80%92%E5% ...

  3. xlsx和path的运用

    从后端获取Excel模板 app.get('/api/download-template', (req, res) => { const templatePath = path.join(__d ...

  4. redis基本数据类型 string

    string类型 1.SET:添加或者修改已经存在的一个String类型的键值对 2.GET:根据key获取String类型的value 3.MSET:批量添加多个String类型的键值对 4.MGE ...

  5. mpi转以太网连接200plc通信不上实际问题和解决方法

    西门子S7200plc通信不上实际问题和解决方法 现场通信的同学在现场调试的时候,现在特别是做项目改造的项目,西门子S7200plc通信面临淘汰,但是在改造的项目中还能经常看到他们的身影,下面我们就来 ...

  6. dp_ppi转光纤模块连接200PLC组态王通信案例

    DP_PPI转光纤模块连接200PLC组态王光纤通信在冷却塔控制系统案例 现场背景介绍: 西门子200 CPU226PLC通过兴达易控dp转光纤模块在200PLC系统中ppi转光纤实现PCL与组态王2 ...

  7. 分布式与微服务——Iaas,Paas和Saas、单体应用和缺点、微服务概念、传统 分布式 SOA 架构与微服务架构的区别、微服务实战、什么是RPC、CAP定理和BASE理论、唯一ID生成、实现分布式

    文章目录 1-什么是Iaas,Paas和Saas 一 IaaS基础设施服务 二 paas平台即服务 三saas软件即服务 四 总结 2-单体应用和缺点 一 单体应用 二 单体应用的缺陷 3-微服务概念 ...

  8. C#学习笔记——变量、常量和转义字符

    变量 变量是存储数值的容器,是一门程序语言的最基础的部分. 不同的变量类型可以存储不同类型的数值. 种类: 在C#种一共有14种变量: 有符号类型4种 无符号类型4种 浮点数3种 特殊类型(char ...

  9. Jmeter-变量的嵌套使用

    场景: 有存在获取到多个登录账号,循环获取单个变量的情况. 常用方法: ${__BeanShell(vars.get("变量字段_${变量字段}"))} 取值示例: 思维扩展: 一 ...

  10. 我试图扯掉这条 SQL 的底裤。

    你好呀,我是歪歪. 这次带大家盘一个我觉得有点意思的东西,也是之前写<一个烂分页,踩了三个坑!>这篇文章时,遇到的一个神奇的现象,但是当时忙着做文章搞定这个主线任务,就没有去深究这个支线任 ...