导语

本文介绍了LSTM的相关内容和在股票价格预测上的应用。

LSTM的股票价格预测

LSTM(Long Short Term Memory)是一种 特殊的RNN类型,同其他的RNNs相比可以更加方便地学习长期依赖关系,因此有很多人试图将其应用于 时间序列的预测问题 上。

汇丰银行全球资产管理开发副总裁Jakob Aungiers在他的个人网站上比较详细地介绍了LSTM在Time Series Prediction上的运用(https://www.jakob-aungiers.com/articles/a/LSTM-Neural-Network-for-Time-Series-Prediction) ,本文以这篇文章的代码为基础,以Bigquant为平台,介绍一下”LSTM-for-Time-Series-Prediction“的流程。

Keras是实现LSTM最方便的python库(Bigquant量化平台已经装好了,不用自己安装了)

from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
from keras.models import Sequential
from keras import optimizers

加载转换数据

例如希望根据前seq_len天的收盘价预测第二天的收盘价,那么可以将data转换为(len(data)-seq_len)(seq_len+1)的数组,由于LSTM神经网络接受的input为3维数组,

因此最后可将input+output转化为(len(data)-seq_len)(seq_len+1)*1的数组

def load_data(instrument,start_date,end_date,field,seq_len,prediction_len,train_proportion,normalise=True):
data=D.history_data(instrument,start_date,end_date,fields)
……
seq_len=seq_len+1
result=[]
for index in range(len(data)-seq_len):
result.append(data[index:index+seq_len])
……
# 规范化之后
x_train = train[:, :-1]
y_train = train[:, -1]
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
# 测试数据同样处理

构建LSTM神经网络

model = Sequential()
model.add(LSTM(input_dim=layers[0],output_dim=layers[1],return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(layers[1],return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(input_dim=layers[1],output_dim=layers[2]))
model.add(Activation("linear"))
rms=optimizers.RMSprop(lr=conf.lr, rho=0.9, epsilon=1e-06)
model.compile(loss="mse", optimizer=rms)

此神经网络共三层,第一层为LSTM层,输入数据维度是1,输出数据维度为seq_len;第二层也为LSTM层,输入和输出维度均为seq_len层;第三层为Dense层,输入数据维度是seq_len,输出数据维度为1,最终将input与output对应起来。

compile:编译用来配置模型的学习过程,可选参数有loss,optimizer等。模型在使用前必须编译,否则在调用fit或evaluate时会抛出异常。

loss为损失函数,可用mse,mae,binary_crossentropy

optimizers为优化器,即优化参数的算法,可供选择为SGD(随机梯度下降法),RMSprop(处理递归神经网络时的一个良好选择),Adagrad等(具体参见http://keras-cn.readthedocs.io/en/latest/ ,网页提供Keras相关函数的详细介绍)。

model.fit(X_train,y_train,batch_size=conf.batch,nb_epoch=conf.epochs,validation_split=conf.validation_split

fit为训练函数,batch_size:整数,训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步;nb_epoch:迭代次数;validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集

predicted = model.predict(data)
predicted = np.reshape(predicted, (predicted.size,))

模型在test_data集上的预测,根据前seq_len长度预测下一时间的close。

另外,在此基础上,若希望预测prediction_len长度的close,则可在第一个predict_close的基础上,以此predict_close和前seq_len-1个true_close为input,预测下一个close,以此类推,可预测一定长度甚至全部长度的时间序列(predict_sequences_multiple,predict_sequence_full)

回测

(以predict_sequences_multiple为例)

思路是这样:看prediction_len长度内的涨跌,若prediction_len最后一天收盘价大于第一天的收盘价,则下买单;反之,不做单或者平仓

效果不是特别好,可能和我没有优化参数有很大关系,希望能抛砖引玉,完整策略代码如下,欢迎指正和讨论:

补充:如果运行出错,请检查M.trade模块是否是最新版本。

附件:基于LSTM的股票价格预测模型实例(文末策略源码)

 

参考资料:

  • LSTM策略主体参考http://www.jakob-aungiers.com/articles/a/LSTM-Neural-Network-for-Time-Series-Prediction,

    • 在一些地方做了一些更改,使之能在bigquant平台上使用以及能够自己调整更多参数
  • 对keras有兴趣者可参考http://keras-cn.readthedocs.io/en/latest/,这里有对keras每个函数的详细介绍

原码链接含源码:《基于LSTM的股票价格预测模型

From:BigQuant量化知识库

基于LSTM的股票价格预测模型【附源码】的更多相关文章

  1. 基于nopCommerce的开发框架(附源码)

    .NET的开发人员应该都知道这个大名鼎鼎的高质量b2c开源项目-nopCommerce,基于EntityFramework和MVC开发,拥有透明且结构良好的解决方案,同时结合了开源和商业软件的最佳特性 ...

  2. 基于Redis缓存的Session共享(附源码)

    基于Redis缓存的Session共享(附源码) 在上一篇文章中我们研究了Redis的安装及一些基本的缓存操作,今天我们就利用Redis缓存实现一个Session共享,基于.NET平台的Seesion ...

  3. 基于Python接口自动化测试框架+数据与代码分离(进阶篇)附源码

    引言 在上一篇<基于Python接口自动化测试框架(初级篇)附源码>讲过了接口自动化测试框架的搭建,最核心的模块功能就是测试数据库初始化,再来看看之前的框架结构: 可以看出testcase ...

  4. 干货——基于Nop的精简版开发框架(附源码)

    .NET的开发人员应该都知道这个大名鼎鼎的高质量b2c开源项目-nopCommerce,基于EntityFramework和MVC开发,拥有透明且结构良好的解决方案,同时结合了开源和商业软件的最佳特性 ...

  5. 在网站开发中很有用的8个 jQuery 效果【附源码】

    jQuery 作为最优秀 JavaScript 库之一,改变了很多人编写 JavaScript 的方式.它简化了 HTML 文档遍历,事件处理,动画和 Ajax 交互,而且有成千上万的成熟 jQuer ...

  6. Web 开发中很实用的10个效果【附源码下载】

    在工作中,我们可能会用到各种交互效果.而这些效果在平常翻看文章的时候碰到很多,但是一时半会又想不起来在哪,所以养成知识整理的习惯是很有必要的.这篇文章给大家推荐10个在 Web 开发中很有用的效果,记 ...

  7. C#进阶系列——一步一步封装自己的HtmlHelper组件:BootstrapHelper(三:附源码)

    前言:之前的两篇封装了一些基础的表单组件,这篇继续来封装几个基于bootstrap的其他组件.和上篇不同的是,这篇的有几个组件需要某些js文件的支持. 本文原创地址:http://www.cnblog ...

  8. 轻量级通信引擎StriveEngine —— C/S通信demo(2) —— 使用二进制协议 (附源码)

    在网络上,交互的双方基于TCP或UDP进行通信,通信协议的格式通常分为两类:文本消息.二进制消息. 文本协议相对简单,通常使用一个特殊的标记符作为一个消息的结束. 二进制协议,通常是由消息头(Head ...

  9. 精选9个值得学习的 HTML5 效果【附源码】

    这里精选了一组很酷的 HTML5 效果.HTML5 是现 Web 开发领域的热点, 拥有很多让人期待已久的新特性,特别是在移动端,Web 开发人员可以借助 HTML5 强大功能轻松制作各种交互性强.效 ...

  10. (原创)通用查询实现方案(可用于DDD)[附源码] -- 简介

    [声明] 写作不易,转载请注明出处(http://www.cnblogs.com/wiseant/p/3985353.html).   [系列文章] 通用查询实现方案(可用于DDD)[附源码] -- ...

随机推荐

  1. git clone时报错:Permission denied

    一.问题简述: 执行git clone git@github.com:T-Better/Soft_test.git时报错:\302\226git@github.com: Permission deni ...

  2. role

    角色权限管理改造方案 #   为什么需要角色 现有的权限方案 .net后台权限管理 在后台类中配置,权限 = 一级菜单:二级菜单:三级菜单: 通过在view模板中判断是否有权限显示菜单 后端通过权限配 ...

  3. 「codeforces - 1621G」Weighted Increasing Subsequences

    link. 一个 dp(拜谢 ly)和切入点都略有不同的做法,并不需要观察啥性质. 原问题针对子序列进行规划,自然地想到转而对前缀进行规划.接下来我们考虑一个前缀 \([1, i]\) 以及一个 \( ...

  4. Solution -「洛谷 P6287」「COCI 2016-2017」Mag

    Description Link. 定义一条链的价值为链上点权乘积除以节链上点数,求一条价值最小的链. Solution 结论:答案链上最多包含一个 \(2\)(其余全为 \(1\)),并且不在链的两 ...

  5. Destoon模板存放及调用规则

    一.模板存放及调用规则 模板存放于系统 template 目录,template 目录下的一个目录例如 template/default/ 即为一套模板模板文件以 .htm 为扩展名,可直接存放于模板 ...

  6. Oracle 高可用 阅读笔记

    1   个人理解概述 1.1  Oracle dg Oracle Data Guard通过从主数据库传输redo data,然后将apply redo到备用数据库,自动维护每个备用数据库.DG分为3个 ...

  7. Godot - 创建翻译文件(常量表)

    版本 Godot 3.1.2 背景 Godot的UI系统封装的很难受, 一些东西很难改动, 比如这个AcceptDialog的"确定""取消"按钮, 特别是在编 ...

  8. 在Finalshell中一直弹出弹窗要求输入密码的解决方案

    在finalshell中即使输入正确了密码,仍然要求输入(密码错误), 对CentOS的防火墙也已经关闭,但是仍然提示 这个原因是因为自创的用户名在finalshell中不被认可,需要将用户名更改为r ...

  9. MVC开发

    我们通过前面的章节可以看到:https://www.liaoxuefeng.com/wiki/1252599548343744/1266264917931808 Servlet适合编写Java代码,实 ...

  10. 记录ElasticSearch分片被锁定导致无法分配处理过程

    .suofang img { max-width: 100% !important; height: auto !important } 本篇文章记录最近ES做节点替换,从shard迁移过程中被锁定导 ...