[ARC122E] Increasing LCMs
Problem Statement
We have a sequence of $N$ positive integers: $A_1,A_2,\cdots,A_N$.
You are to rearrange these integers into another sequence $x_1,x_2,\cdots,x_N$, where $x$ must satisfy the following condition:
- Let us define $y_i=\operatorname{LCM}(x_1,x_2,\cdots,x_i)$, where the function $\operatorname{LCM}$ returns the least common multiple of the given integers. Then, $y$ is strictly increasing. In other words, $y_1<y_2<\cdots<y_N$ holds.
Determine whether it is possible to form a sequence $x$ satisfying the condition, and show one such sequence if it is possible.
Constraints
- $1 \leq N \leq 100$
- $2 \leq A_1 < A_2 \cdots < A_N \leq 10^{18}$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$
$A_1$ $A_2$ $\cdots$ $A_N$
Output
If it is possible to form a sequence $x$ satisfying the condition, print your answer in the following format:
Yes
$x_1$ $x_2$ $\cdots$ $x_N$
If it is impossible, print No
.
Sample Input 1
3
3 4 6
Sample Output 1
Yes
3 6 4
For $x=(3,6,4)$, we have:
- $y_1=\operatorname{LCM}(3)=3$
- $y_2=\operatorname{LCM}(3,6)=6$
- $y_3=\operatorname{LCM}(3,6,4)=12$
Here, $y_1<y_2<y_3$ holds.
Sample Input 2
3
2 3 6
Sample Output 2
No
No permutation of $A$ would satisfy the condition.
Sample Input 3
10
922513 346046618969 3247317977078471 4638516664311857 18332844097865861 81706734998806133 116282391418772039 134115264093375553 156087536381939527 255595307440611247
Sample Output 3
Yes
922513 346046618969 116282391418772039 81706734998806133 255595307440611247 156087536381939527 134115264093375553 18332844097865861 3247317977078471 4638516664311857
巧妙地,考虑倒着构造整个序列。
想一下如何选出一个可以排在最后的数,当且仅当他存在某一个质因子的次数是严格最大的。
可以先用 Pollard-Pho 分解出来判断。
每次选一个可以放在最后的元素,不会使本来可以放的数变成不能放。
但是真的要 Pollard-Pho 吗?
枚举 \(10^6\) 以内的数进行分解,那么还没分解出来的要不是两个大质数相乘,要不是一个质数。
对于两个大质数的情况,枚举其他的数,取gcd,如果取出来不是 1 我们就分解出来了,否则可以把这个数当成一个数,不影响性质。
#include<bits/stdc++.h>
using namespace std;
const int N=105,M=N*30;
typedef long long LL;
int p[N][M],c,n,vs[N],st[N];
LL a[N],to[M],b[N];
map<LL,LL>v;
multiset<int>s[M];
LL gcd(LL x,LL y)
{
if(!y)
return x;
return gcd(y,x%y);
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lld",a+i),b[i]=a[i];
for(int j=2;j<=1000000;j++)
{
if(a[i]%j==0)
{
if(!v[j])
to[++c]=j,v[j]=c;
while(a[i]%j==0)
a[i]/=j,p[i][v[j]]++;
}
}
}
for(int i=1;i<=n;i++)
{
if(a[i]==1)
continue;
int fl=0;
for(int j=1;j<=n;j++)
{
LL d=gcd(a[i],a[j]);
if(d^a[i]&&d^1)
{
if(!v[d])
v[d]=++c;
if(!v[a[i]/d])
to[++c]=a[i]/d,v[a[i]/d]=c;
++p[i][v[d]],++p[i][v[a[i]/d]];
fl=1,j=n;
}
}
if(!fl)
{
if(!v[a[i]])
to[++c]=a[i],v[a[i]]=c;
p[i][v[a[i]]]++;
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=c;j++)
s[j].insert(p[i][j]);
// for(int i=1;i<=n;i++)
// {
// printf("%lld ",b[i]);
// for(int j=1;j<=c;j++)
// printf("%lld %d\n",to[j],p[i][j]);
// puts("");
//
// }
for(int i=1;i<=n;i++)
{
int pf=0;
for(int j=1;j<=n;j++)
{
if(vs[j])
continue;
int fl=0;
for(int k=1;k<=c;k++)
if(s[k].size()==1||(*(--s[k].end())==p[j][k]&&(*--s[k].end())^(*(--(--s[k].end())))))
fl=1,vs[j]=1,st[i]=j,k=c,pf=1;
if(fl)
{
for(int k=1;k<=c;k++)
s[k].erase(s[k].lower_bound(p[j][k]));
j=n;
}
}
if(!pf)
return puts("No"),0;
}
puts("Yes");
for(int i=n;i>=1;i--)
printf("%lld ",b[st[i]]);
}
[ARC122E] Increasing LCMs的更多相关文章
- ARC 122 简要题解
ARC 122 简要题解 传送门 A - Many Formulae 考虑对于每个数分别算其贡献. 通过枚举该数前面的符号,借助一个非常简单的 \(\mathrm{DP}\)(\(f_{i,0/1}\ ...
- [LeetCode] Increasing Triplet Subsequence 递增的三元子序列
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...
- [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- [LeetCode] Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- git error: unable to rewind rpc post data - try increasing http.postBuffer
error: unable to rewind rpc post data - try increasing http.postBuffererror: RPC failed; curl 56 Rec ...
- 【LeetCode】Increasing Triplet Subsequence(334)
1. Description Given an unsorted array return whether an increasing subsequence of length 3 exists o ...
- [tem]Longest Increasing Subsequence(LIS)
Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...
- [LintCode] Longest Increasing Subsequence 最长递增子序列
Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...
- LintCode-Longest Increasing Subsequence
Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...
- Longest Increasing Path in a Matrix -- LeetCode 329
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
随机推荐
- 3.你不知道的go语言控制语句
目录 本篇前瞻 Leetcode习题9 题目描述 题目分析 代码编写 知识点归纳 控制结构 顺序结构(Sequence) 声明和赋值 算术运算符 位运算符 逻辑运算 分支结构 if 语句 switch ...
- 文心一言 VS 讯飞星火 VS chatgpt (79)-- 算法导论7.4 4题
四.请用go语言,证明:RANDOMIZED-QUICKSORT 期望运行时间是 Ω(nlgn). 文心一言: 首先,为了证明RANDOMIZED-QUICKSORT的期望运行时间是Ω(nlg n), ...
- 【路由器】OpenWrt 手动编译 ipk
目录 .ipk 文件 编译准备 编译 .ipk 文件 更新 feeds 配置平台 获取交叉编译链 添加需要编译的第三方软件包 参考资料 .ipk 文件 .ipk 文件是可以通过 OpenWrt 的包管 ...
- Go 并发编程 - 并发安全(二)
什么是并发安全 并发情况下,多个线程或协程会同时操作同一个资源,例如变量.数据结构.文件等.如果不保证并发安全,就可能导致数据竞争.脏读.脏写.死锁.活锁.饥饿等一系列并发问题,产生重大的安全隐患,比 ...
- Python图片与Base64相互转换
import base64 #必须的 pic=open("img.png","rb")#读取本地文件 pic_base=base64.b64encode(pic ...
- 入门篇-其之二-Java基础知识
目录 对第一个Java程序的思考 外层结构--类 内层结构--main方法 输出语句 注释 单行注释 多行注释 文档注释 文档注释常用标签 使用javadoc命令生成网页风格的文档 阿里巴巴Java开 ...
- 五分钟 k8s入门到实战--跨服务调用
背景 在做传统业务开发的时候,当我们的服务提供方有多个实例时,往往我们需要将对方的服务列表保存在本地,然后采用一定的算法进行调用:当服务提供方的列表变化时还得及时通知调用方. student: url ...
- Linux部署项目常用命令(持续更新)
防火墙配置 # 启动防火墙服务 systemctl start firewalld # 关闭防火墙服务 systemctl stop firewalld # 查看防火墙服务状态 systemctl s ...
- SQL连接符Left Join小实例
在一数据移植项目中,Left Join的应用 项目要求根据卡号获取最终用户号,规则如下: 1.根据card查询tbl_TestA表,获取userid,根据userid作为id查询tbl_TestB获 ...
- 5.go语言函数提纲
1 本篇前瞻 前端时间的繁忙,未曾更新go语言系列.由于函数非常重要,为此将本篇往前提一提,另外补充一些有关go新版本前面遗漏的部分. 需要恭喜你的事情是本篇学完,go语言中基础部分已经学完一半,这意 ...