dada的GCD ( jxnu acm新生选拔赛)
1007 dada的GCD,输入格式描述有误,已修正dada的GCD
Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other)
Total Submission(s) : 36 Accepted Submission(s) : 8
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
C语言都学过了怎么计算两个数的最大公约数,而一段区间[L,R]的GCD即这段区间所有数的最大公约数。现在给你一串长度为n的序列,如果对于序列的任意子区间[L,R],都有这段区间的gcd>=2,那么这段序列就叫做dada的GCD序列。
n<=10^4
序列的每个数小于10^9Input
第一行有一个整数t,代表t组数据
每组输入有一个正整数n,
随后一行n个正整数。
大量输入,使用cin的同学请关闭stdio同步Output
如果是dada的GCD序列,就输出Yes,反之输出NoSample Input
2
3
2 6 4
3
4 6 9Sample Output
Yes
NoAuthor
Luke叶Source
jxnu
1 #include<iostream>
2 #include<stdio.h>
3 #include<string.h>
4 #include<algorithm>
5 using namespace std;
6 int a[100050];
7 int s[1005];
8 bool su(int x){
9 if(x%2==0) return false;
10 else {
11 for(int i=3;i*i<=x;i=i+2){
12 if(x%i==0) return false;
13 }
14 return true;
15 }
16 }
17 int main()
18 {
19 int T;
20 s[0]=2;
21 int t=1;
22 for(int i=3;t<1003;i++)
23 if(su(i)){
24 s[t]=i;
25 t++;
26 }
27 cin>>T;
28 while(T--)
29 {
30 int n;
31 scanf("%d",&n);
32 memset(a,0,sizeof(a));
33 for(int i=0;i<n;i++)
34 scanf("%d",&a[i]);
35 bool flag=false;
36 for(int i=0;i<t;i++)
37 {
38 int sum=0;
39 for(int j=0;j<n;j++){
40 if(a[j]%s[i]==0){
41 sum++;
42 }
43 }
44 if(sum==n){
45 flag=true;
46 break;
47 }
48 }
49 if(flag) cout<<"Yes"<<endl;
50 else cout<<"No"<<endl;
51 }
52 return 0;
53 }
正版AC代码:
1 #include<iostream>
2 #include<stdio.h>
3 using namespace std;
4 int a[10005];
5 int gcd(int a,int b)
6 {
7 if(a==0) return b;
8 else{
9 return gcd(b%a,a);
10 }
11 }
12 int main()
13 {
14 int T;
15 cin>>T;
16 while(T--){
17 int n;
18 cin>>n;
19 for(int i=0;i<n;i++){
20 scanf("%d",&a[i]);
21 }
22 if(n==1){
23 if(a[0]>=2) cout<<"Yes"<<endl;
24 else cout<<"No"<<endl;
25 }else{
26 int ans=gcd(a[0],a[1]);
27 bool flag=true;
28 for(int i=2;i<n;i++){
29 ans=gcd(ans,a[i]);
30 if(ans<2){
31 flag=false;
32 break;
33 }
34 }
35 if(flag) cout<<"Yes"<<endl;
36 else cout<<"No"<<endl;
37 }
38 }
39 return 0;
40 }
dada的GCD ( jxnu acm新生选拔赛)的更多相关文章
- JXNU 新生选拔赛
1001 最小的数 Problem Description 定义一种正整数集合K,集合中有N个数,集合中元素Ki(1<=i<=N)是包含i个不同质因子的最小的数.因为Ki可能会很大,所以将 ...
- 2019 年「计算机科学与工程学院」新生赛 暨ACM集训队选拔赛 # 1
T1 请问这还是纸牌游戏吗 https://scut.online/p/567 这道题正解据说是方根 这里先放着等以后填坑吧qwq 但是由于这道题数据是随机的 所以其实是有各种水法的(但是我比赛根本没 ...
- 2018 ACM 网络选拔赛 青岛赛区
一些题目的代码被网站吞了…… Problem B. Red Black Tree http://acm.zju.edu.cn/onlinejudge/searchProblem.do?contestI ...
- GCD XOR, ACM/ICPC Dhaka 2013, UVa12716
不同的枚举方法,效率完全不同.值得记录一下! #include <cstdio> #include <cstring> , count = ; ]; void pre() { ...
- 2018 ACM 网络选拔赛 北京赛区
A Saving Tang Monk II #include <bits/stdc++.h> using namespace std; ; struct node { int x,y,z, ...
- 2018 ACM 网络选拔赛 徐州赛区
A. Hard to prepare #include <cstdio> #include <cstdlib> #include <cmath> #include ...
- 2018 ACM 网络选拔赛 焦作赛区
A. Magic Mirror #include <cstdio> #include <cstdlib> #include <cmath> #include < ...
- 2018 ACM 网络选拔赛 沈阳赛区
B. Call of Accepted #include <cstdio> #include <cstdlib> #include <cmath> #include ...
- 2018 ACM 网络选拔赛 南京赛区
A. An Olympian Math Problem #include <cstdio> #include <cstdlib> #include <cmath> ...
- 2019年华南理工大学软件学院ACM集训队选拔赛 Round1
TIps: 1.所有代码中博主使用了scanf和printf作为输入输出 2.代码中使用了define LL long long 所以在声明变量的时候 LL其实就等价于long long 希望这两点 ...
随机推荐
- 如何做一个api接口?
程序员是公司里的技术岗位,是产品经理最亲密的伙伴.但是程序员可以理解产品经理的工作,产品经理却不一定理解程序员的工作,所以经常被无良程序员欺骗.从API接口这个维度,分析API的概念以及为什么要了解它 ...
- Go开始:Go基本元素介绍
本文深入探讨了Go编程语言中的核心概念,包括标识符.关键字.具名函数.具名值.定义类型.类型别名.包和模块管理,以及代码块和断行.这些元素是构成Go程序的基础,也是编写高质量代码的关键. 关注Tech ...
- ShardingSphere实战
前言 本文主要从sharding最新版本5.1.2版本入手搭建,按主键ID和时间进行分表. 本文主要介绍搭建过程,有兴趣了解shardingsphere的同学可以先自行查阅相关资料. shardsph ...
- 图解 LeetCode 算法汇总——回溯
本文首发公众号:小码A梦 回溯算法是一种常见的算法,常见用于解决排列组合.排列问题.搜索问题等算法,在一个搜索空间中寻找所有的可能的解.通过向分支不断尝试获取所有的解,然后找到合适的解,找完一个分支后 ...
- 3天上手Ascend C编程丨通过Ascend C编程范式实现一个算子实例
本文分享自华为云社区<3天上手Ascend C编程 | Day2 通过Ascend C编程范式实现一个算子实例>,作者:昇腾CANN . 一.Ascend C编程范式 Ascend C编程 ...
- 在线问诊 Python、FastAPI、Neo4j — 创建症状节点
目录 症状数据 创建节点 附学习 电子病历中,患者主诉对应的相关检查,得出的诊断以及最后的用药情况.症状一般可以从主诉中提取. 症状数据 symptom_data.csv CSV 中,没有直接一行一个 ...
- java获取服务器ip地址的工具类
参考: https://www.cnblogs.com/raphael5200/p/5996464.html 代码实现 import lombok.extern.slf4j.Slf4j; import ...
- TCP vs UDP:揭秘可靠性与效率之争
概述 今天我们开始主要讲解TCP的相关知识点.在之前讲解分层章节的时候,我们提到过一个重要观点.在网络层及以下几层,更多的是让主机与主机建立连接,也就是说你的电脑需要知道另一台电脑在哪里才能连接上它. ...
- antd/fusion表格增加圈选复制功能
背景介绍 我们存在着大量在PC页面通过表格看数据业务场景,表格又分为两种,一种是 antd / fusion 这种基于 dom 元素的表格,另一种是通过 canvas 绘制的类似 excel 的表格. ...
- 日常Bug排查-读从库没有原子性?
日常Bug排查系列都是一些简单Bug排查.问题虽小,但经常遇到,了解这些问题,会让我们少走点弯路,提升效率.说不定有些问题你遇到过哦:) Bug现场 业务开发同学突然问了笔者一个问题,从库读会不会没有 ...