A*(A star)搜索总结
定义
先复制一则定义
A*算法在人工智能中是一种典型的启发式搜索算法
启发中的估价是用估价函数表示的:
h(n)=f(n)+g(n)
其中f(n)是节点n的估价函数
g(n)表示实际状态空间中从初始节点到n节点的实际代价
h(n)是从n到目标节点最佳路径的估计代价。
另外定义h'(n)为n到目标节点最佳路径的实际值。
如果h'(n)≥h(n)则如果存在从初始状态走到目标状态的最小代价的解
那么用该估价函数搜索的算法就叫A*算法。
有点繁琐,但也看得过去
通俗来讲
的核心在于上面所讲到的估价函数
他是干什么用的呢
就是我们在搜索的过程中,保证更优的先搜用的
还是有些繁琐对不对,嗯,我也不大会讲啊(没事我会加油)
嘿,认真看下面,我可认真了的啊。。。
如果一个题目要求我们求前K个代价最小的解(只是一个典型,不是所有题目都这样)
假设我们现在有一个状态在
已经要记录到答案里面的代价是(我喜欢用这个)
我们发现如果爆搜的话状态会是乱的对不对,肯定会使搜索搜到太多
而如果直接把状态按照排序的话不能保证答案就会正确(当然,不然就去贪心去)
所以我们引进一个估价函数状态
当然要求一般是可以预处理出一个状态到答案状态的最优解
回到前面讲到的当前状态
如果我们把与并列的所有状态按排序呢?
既不影响答案的正确性,又可以减少坏状态的转移
(因为题目要求是K个最优状态,而这样待决策状态会有序且跑完K个就可以结束,所以会变快)
好吧,还有点蒙对不对,那我们看例题
例题
[洛谷P2901 USACO08MAR]牛慢跑Cow Jogging
好像其他很多都有,但是是权限。。。
题目简述
要求我们求出从起点n到终点1的最短K条路径的长度
(只能从编号大的点往编号小的点走&边有边权)
很裸对吧?
- 预处理估价函数
先跑一遍反向边的预处理出每个点到1的最短路作为估价函数
- 直接跑(这里用实现)
从n号点开始,用堆来代替队列(实现上面所讲的排序)
这时候先到1节点的肯定答案更优(也就是路径更短)
原因很简单吧:估价函数保证答案合法,而排序之后答案有序
搜到K个到达1节点的路径就可以结束,快的飞起。。。
放个代码?
好不容易写一次注释
#include<bits/stdc++.h>
#define lst long long
#define ldb double
#define N 1050
#define M 10050
#define qw ljl[i].to
using namespace std;
const lst Inf=1e15;
int read()
{
int s=0,m=0;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')m=1;ch=getchar();}
while( isdigit(ch))s=(s<<3)+(s<<1)+(ch^48),ch=getchar();
return m?-s:s;
}
int n,m,K,Done;
bool in[N];
lst dis[N];
queue<int> Q;
int hd[N],cnt;
struct EDGE{int to,nxt,v;}ljl[M<<1];
void Add(int p,int q,int o){ljl[++cnt]=(EDGE){q,hd[p],o},hd[p]=cnt;}
void SPFA()
{
for(int i=2;i<=n;++i)dis[i]=Inf;
while(!Q.empty())Q.pop();
Q.push(1),dis[1]=0,in[1]=true;
while(!Q.empty())
{
int now=Q.front();Q.pop(),in[now]=false;
for(int i=hd[now];i;i=ljl[i].nxt)
if(qw>now&&dis[qw]>dis[now]+ljl[i].v)
{
dis[qw]=dis[now]+ljl[i].v;
if(!in[qw])in[qw]=true,Q.push(qw);
}
}
}
//h[i]=g[i]+f[i]---->ans[i]=D+dis[i]
struct NODE{
lst D;int id;
bool operator<(const NODE &X) const
{
return D+dis[id]>X.D+dis[X.id];
}
};priority_queue<NODE> H;
void A_star_Bfs()
{
while(!H.empty())H.pop();
H.push((NODE){0,n});
while(!H.empty())
{
NODE temp=H.top();
int now=temp.id;H.pop();
if(now==1)
{
printf("%lld\n",temp.D);
if(++Done==K)return;continue;
}
for(int i=hd[now];i;i=ljl[i].nxt)
if(qw<now)H.push((NODE){temp.D+ljl[i].v,qw});
}while(Done<K)++Done,puts("-1");
}
int main()
{
n=read(),m=read(),K=read();
for(int i=1;i<=m;++i)
{
int p=read(),q=read(),o=read();
Add(p,q,o),Add(q,p,o);
}
SPFA(),A_star_Bfs();
return 0;
}
/************
1.A*算法在人工智能中是一种典型的启发式搜索算法
启发中的估价是用估价函数表示的:
h(n)=f(n)+g(n)
其中f(n)是节点n的估价函数
g(n)表示实际状态空间中从初始节点到n节点的实际代价
h(n)是从n到目标节点最佳路径的估计代价。
另外定义h'(n)为n到目标节点最佳路径的实际值。
如果h'(n)≥h(n)则如果存在从初始状态走到目标状态的最小代价的解
那么用该估价函数搜索的算法就叫A*算法。
2.第K最短路的算法
我们设源点为s,终点为t,我们设状态f(i)的g(i)为从s走到节点i的实际
距离,h(i)为从节点i到t的最短距离,从而满足A*算法的要求,
当第K次走到f(n-1)时表示此时的g(n-1)为第K最短路长度。
3.这里是kuai的xzy的。。。别怪我。。。
*************/
总结
暂时就将这么多吧
主要是看到网上没有写的那么通俗的搜索
就想自己总结一下(其实也不通俗。。。)
撤撤撤溜了溜了*_*
A*(A star)搜索总结的更多相关文章
- A*(A_star)搜索总结
\(A^*(A star)\)搜索总结 标签:算法--搜索 阅读体验:https://zybuluo.com/Junlier/note/1299772 定义 先复制一则定义 \(A^*\)算法在人工智 ...
- T4 模板自动生成带注释的实体类文件 - 只需要一个 SqlSugar.dll
生成实体就是这么简单,只要建一个T4文件和 文件夹里面放一个DLL. 使用T4模板教程 步骤1 创建T4模板 ,一定要自已新建,把T4代码复制进去,好多人因为用我现成的T4报错(原因不明) 点击添加文 ...
- grep 正则表达式
本文转自:http://www.jb51.net/article/31207.htm 正则表达式只是一种表示法,只要工具支持这种表示法, 那么该工具就可以处理正则表达式的字符串.vim.grep.aw ...
- T4 模板自动生成带注释的实体类文件
T4 模板自动生成带注释的实体类文件 - 只需要一个 SqlSugar.dll 生成实体就是这么简单,只要建一个T4文件和 文件夹里面放一个DLL. 使用T4模板教程 步骤1 创建T4模板 如果你没有 ...
- Linux正则表达式grep与egrep
grep -io "http:/=[A-Z0-9]\{16\}" ./wsxf.txt >wsxf_urls.txt Linux正则表达式grep与egrep 正则表达式:它 ...
- grep与正则表达式,grep、egrep和fgrep
grep用法详解:grep与正则表达式 首先要记住的是: 正则表达式与通配符不一样,它们表示的含义并不相同!正则表达式只是一种表示法,只要工具支持这种表示法, 那么该工具就可以处理正则表达式的字符串. ...
- grep用法
正则表达式只是一种表示法,只要工具支持这种表示法, 那么该工具就可以处理正则表达式的字符串.vim.grep.awk .sed 都支持正则表达式,也正是因为由于它们支持正则,才显得它们强大:在以前上班 ...
- grep与正则表达式详解和实例
转载自:http://www.jb51.net/article/31207.htm grep 工具,以前介绍过. grep -[acinv] '搜索内容串' filename -a 以文本文件方式搜索 ...
- grep用法详解:grep与正则表达式
首先要记住的是: 正则表达式与通配符不一样,它们表示的含义并不相同!正则表达式只是一种表示法,只要工具支持这种表示法, 那么该工具就可以处理正则表达式的字符串.vim.grep.awk .sed 都支 ...
- 每天一个linux命令8之grep高级篇
1语法 grep -[acinv] '搜索内容串' filename -a 以文本文件方式搜索-c 计算找到的符合行的次数-i 忽略大小写-n 顺便输出行号-v 反向选择,即找 没有搜索字 ...
随机推荐
- Go语言函数详解
函数 (1)函数的定义 函数使用func进行定义 函数是基本的代码块,用于执行一个任务 Go语言至少有一个main函数 函数声明告诉了编译器函数的名称,返回类型和参数 //1.无参数无返回值函数的定义 ...
- 用元编程来判断STL类型
在此之前,先来回顾元编程当中的一个重要概念. template<typename _Tp, _Tp __v> struct integral_constant { static con ...
- jdk11的HttpClient
我们都知道在jdk11之前都在用okhttp或者org.apache.httpcomponents 其实早在jdk9的时候这个方案就在孵化中 上面的截图来自openjdk的官网,注:openjdk是 ...
- [ABC265C] Belt Conveyor
Problem Statement We have a grid with $H$ horizontal rows and $W$ vertical columns. $(i, j)$ denotes ...
- 28、错误error
1.是什么? 在实际的项目中,我们希望通过程序的错误信息快速定位问题,但是又不喜欢错误处理:代码就会很冗余又啰嗦.Go语言没有提供类似Java.C#语言中的try...catch异常处理方法,而是通过 ...
- 华企盾DSC发送白名单提示“解密发送失败”(被中转服务器判定为垃圾邮箱)
解决方法:用DebugView监控,发现含有550错误,说明中转服务器被判定为垃圾邮箱,换一个中转邮箱或者设置为无中转发送 还有一种可能:邮箱设置了收到邮箱后自动删除 DebugView中显示上图 ...
- Python——第五章:logging模块
logging 模块是 Python 中用于记录日志的官方模块.通过 logging 模块,你可以配置和管理日志的生成.处理和存储. logging.basicConfig()用法 filename: ...
- Rasa中的tracker_store和event_broker
Rasa 中的 tracker_store 相对主流为 Redis,event_broker 相对主流为 RabbitMQ.后续为了研究学习直接将 tracker_store 和 event_br ...
- 云小课|MRS基础操作之集群健康检查
本文分享自华为云社区<云小课|MRS基础操作之集群健康检查>,作者:阅识风云. 阅识风云是华为云信息大咖,擅长将复杂信息多元化呈现,其出品的一张图(云图说).深入浅出的博文(云小课)或短视 ...
- 【好书推荐】《Python黑魔法指南》-附高清PDF版
摘要:<Python 黑魔法手册.pdf >作者(明哥)是一个从事云计算多年的 Python 重度用户,它把自已多年的 Python 编码经验整理成小册子,没有长篇大论,半天就能全能掌握, ...