为什么浮点数 floatdouble 运算的时候会有精度丢失的风险呢?

《阿里巴巴 Java 开发手册》中提到:“浮点数之间的等值判断,基本数据类型不能用 == 来比较,包装数据类型不能用 equals 来判断”。“为了避免精度丢失,可以使用 BigDecimal 来进行浮点数的运算”。

浮点数的运算竟然还会有精度丢失的风险吗?确实会!

示例代码:

float a = 2.0f - 1.9f;
float b = 1.8f - 1.7f;
System.out.println(a);// 0.100000024
System.out.println(b);// 0.099999905
System.out.println(a == b);// false

这个和计算机保存浮点数的机制有很大关系。我们知道计算机是二进制的,而且计算机在表示一个数字时,宽度是有限的,无限循环的小数存储在计算机时,只能被截断,所以就会导致小数精度发生损失的情况。这也就是解释了为什么浮点数没有办法用二进制精确表示。

就比如说十进制下的 0.2 就没办法精确转换成二进制小数:

// 0.2 转换为二进制数的过程为,不断乘以 2,直到不存在小数为止,
// 在这个计算过程中,得到的整数部分从上到下排列就是二进制的结果。
0.2 * 2 = 0.4 -> 0
0.4 * 2 = 0.8 -> 0
0.8 * 2 = 1.6 -> 1
0.6 * 2 = 1.2 -> 1
0.2 * 2 = 0.4 -> 0(发生循环)
...

关于浮点数的更多内容,建议看一下计算机系统基础(四)浮点数这篇文章。

那我们怎样来解决这样的问题呢?

JDK开发人员在很早就遇到了这个问题,并在JDK1.3起给我们提供了一种新的处理精确值的类BigDecimal,BigDecimal是标准的类,在编译器中不需要特殊支持,它可以表示任意精度的小数,并对它们进行计算。在内部,可以用任意精度任何范围的值和一个

换算因子来表示 BigDecimal,换算因子表示左移小数点多少位,从而得到所期望范围内的值

BigDecimal 介绍

BigDecimal 可以实现对浮点数的运算,不会造成精度丢失。

通常情况下,大部分需要浮点数精确运算结果的业务场景(比如涉及到钱的场景)都是通过 BigDecimal 来做的。

想要解决浮点数运算精度丢失这个问题,可以直接使用 BigDecimal 来定义浮点数的值,然后再进行浮点数的运算操作即可。

BigDecimal a = new BigDecimal("1.0");
BigDecimal b = new BigDecimal("0.9");
BigDecimal c = BigDecimal.valueOf(0.8); BigDecimal x = a.subtract(b);
BigDecimal y = b.subtract(c); System.out.println(x.compareTo(y));// 0

BigDecimal 常见方法

创建

在使用 BigDecimal 时,为了防止精度丢失,推荐使用它的BigDecimal(String val)构造方法或者 BigDecimal.valueOf(double val) 静态方法来创建对象。

《阿里巴巴 Java 开发手册》对这部分内容也有提到,如下图所示。

public static BigDecimal valueOf(double val) {
return new BigDecimal(Double.toString(val));
}

加减乘除

  • add 方法:两个 BigDecimal 对象相加
  • subtract 方法:两个 BigDecimal 对象相减
  • multiply 方法:两个 BigDecimal 对象相乘
  • divide 方法:两个 BigDecimal 对象相除。
BigDecimal a = new BigDecimal("1.0");
BigDecimal b = new BigDecimal("0.9");
System.out.println(a.add(b));// 1.9
System.out.println(a.subtract(b));// 0.1
System.out.println(a.multiply(b));// 0.90
System.out.println(a.divide(b));// 无法除尽,抛出 ArithmeticException 异常
System.out.println(a.divide(b, 2, RoundingMode.HALF_UP));// 1.11

这里需要注意的是,在使用 divide 方法的时候尽量使用 3 个参数版本,并且RoundingMode 不要选择 UNNECESSARY,否则很可能会遇到 ArithmeticException(无法除尽出现无限循环小数的时候),其中 scale 表示要保留几位小数,roundingMode 代表保留规则。

public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode) {
return divide(divisor, scale, roundingMode.oldMode);
}

保留几位小数 setScale

通过 setScale方法设置保留几位小数以及保留规则。保留规则如上,不需要记,IDEA 会提示。

BigDecimal m = new BigDecimal("1.255433");
BigDecimal n = m.setScale(3, RoundingMode.HALF_DOWN);
System.out.println(n);// 1.255

保留规则非常多,这里列举几种:

public enum RoundingMode {
// 2.5 -> 3 , 1.6 -> 2
// -1.6 -> -2 , -2.5 -> -3
UP(BigDecimal.ROUND_UP),//远离零方向舍入,无论正负
// 2.5 -> 2 , 1.6 -> 1
// -1.6 -> -1 , -2.5 -> -2
DOWN(BigDecimal.ROUND_DOWN),//向零方向舍入,直接去掉小数部分。
// 2.5 -> 3 , 1.6 -> 2
// -1.6 -> -1 , -2.5 -> -2
CEILING(BigDecimal.ROUND_CEILING),//向正无穷方向舍入。
// 2.5 -> 2 , 1.6 -> 1
// -1.6 -> -2 , -2.5 -> -3
FLOOR(BigDecimal.ROUND_FLOOR),//向负无穷方向舍入。
// 2.5 -> 3 , 1.6 -> 2
// -1.6 -> -2 , -2.5 -> -3
HALF_UP(BigDecimal.ROUND_HALF_UP),//四舍五入,小数部分 >= 0.5 向上,否则向下。
//......
}

等值比较问题

《阿里巴巴 Java 开发手册》中提到:

BigDecimal 使用 equals() 方法进行等值比较出现问题的代码示例:

BigDecimal a = new BigDecimal("1");
BigDecimal b = new BigDecimal("1.0");
System.out.println(a.equals(b));//false

这是因为BigDecimal的 equals() 方法不仅仅会比较值的大小(value)还会比较精度(scale),而 compareTo() 方法比较的时候会忽略精度。

1.0 的 scale 是 1,1 的 scale 是 0,因此 a.equals(b) 的结果是 false。

compareTo() 方法可以比较两个 BigDecimal 的值:

a.compareTo(b) : 返回 -1 表示 a 小于 b,0 表示 a 等于 b , 1 表示 a 大于 b

BigDecimal a = new BigDecimal("1");
BigDecimal b = new BigDecimal("1.0");
System.out.println(a.compareTo(b));//0

BigDecimal 存在的性能问题

由于其精确性和灵活性,BigDecimal 在某些场景下同样可能会带来性能问题。

BigDecimal的性能问题主要源于以下几点:

  1. 内存占用:BigDecimal 对象的内存占用较大,尤其是在处理大数字时。每个 BigDecimal 实例都需要维护其精度和标度等信息,这会导致内存开销增加。
  2. 不可变性:BigDecimal 是不可变类,每次进行运算或修改值时都会生成一个新的 BigDecimal 实例。这意味着频繁的操作可能会导致大量的对象创建和垃圾回收,对性能造成一定的影响。
  3. 运算复杂性:由于 BigDecimal 要求精确计算,它在执行加、减、乘、除等运算时会比较复杂。这些运算需要更多的计算和处理时间,相比原生的基本类型,会带来一定的性能损耗。

性能问题验证:

@Slf4j
public class BigDecimalEfficiency { //执行次数
public static int REPEAT_TIMES = 10000000; // 转BigDecimal 类型计算
public static double computeByBigDecimal(double a, double b) {
BigDecimal result = BigDecimal.valueOf(0);
BigDecimal decimalA = BigDecimal.valueOf(a);
BigDecimal decimalB = BigDecimal.valueOf(b);
for (int i = 0; i < REPEAT_TIMES; i++) {
result = result.add(decimalA.multiply(decimalB));
}
return result.doubleValue();
} // 转double 类型计算
public static double computeByDouble(double a, double b) {
double result = 0;
for (int i = 0; i < REPEAT_TIMES; i++) {
result += a * b;
}
return result;
} public static void main(String[] args) {
long start1 = System.nanoTime();
double result1 = computeByBigDecimal(0.120001110034, 11.22);
long end1 = System.nanoTime();
long start2 = System.nanoTime();
double result2 = computeByDouble(0.120001110034, 11.22);
long end2 = System.nanoTime(); long timeUsed1 = (end1 - start1);
long timeUsed2 = (end2 - start2);
log.info("result by BigDecimal:{},time used:{}", result1, timeUsed1);
log.info("result by Double:{},time used:{}", result2, timeUsed2);
log.info("timeUsed1/timeUsed2=" + timeUsed1 / timeUsed2);
}
}

运行结果:

性能优化策略

BigDecimal 性能问题优化策略,可以考虑以下几点优化策略:

  1. 避免频繁的对象创建:尽量复用 BigDecimal 对象,而不是每次运算都创建新的实例。可以使用 BigDecimal 的 setScale() 方法设置精度和舍入模式,而不是每次都创建新的对象。
  2. 使用原生类型替代:对于一些不需要精确计算的场景,可以使用原生类型(如 int、double、long)来进行运算,以提高性能。只在最后需要精确结果时再转换为 BigDecimal。
  3. 使用适当的缓存策略:对于频繁使用的 BigDecimal 对象,可以考虑使用缓存来避免重复创建和销毁。例如,使用对象池或缓存来管理常用的 BigDecimal 对象,以减少对象创建和垃圾回收的开销。
  4. 考虑并行计算:对于大规模的计算任务,可以考虑使用并行计算来提高性能。Java 8 提供了 Stream API 和并行流(parallel stream),可以方便地实现并行计算。

需要根据具体的应用场景和需求来权衡精确性和性能,选择合适的处理方式。在对性能要求较高的场景下,可以考虑使用其他更适合的数据类型或算法来替代 BigDecimal。在需要精度计算的情况下,也不能因为BigDecimal存在一定的性能问题二选择弃用,顾此失彼。

BigDecimal 工具类分享

网上有一个使用人数比较多的 BigDecimal 工具类,提供了多个静态方法来简化 BigDecimal 的操作。源码:

public class BigDecimalUtil {

    /**
* 默认除法运算精度
*/
private static final int DEF_DIV_SCALE = 10; private BigDecimalUtil() {
} /**
* 提供精确的加法运算。
*
* @param v1 被加数
* @param v2 加数
* @return 两个参数的和
*/
public static double add(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.add(b2).doubleValue();
} /**
* 提供精确的减法运算。
*
* @param v1 被减数
* @param v2 减数
* @return 两个参数的差
*/
public static double subtract(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.subtract(b2).doubleValue();
} /**
* 提供精确的乘法运算。
*
* @param v1 被乘数
* @param v2 乘数
* @return 两个参数的积
*/
public static double multiply(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.multiply(b2).doubleValue();
} /**
* 提供(相对)精确的除法运算,当发生除不尽的情况时,精确到小数点以后10位,以后的数字四舍五入。
*
* @param v1 被除数
* @param v2 除数
* @return 两个参数的商
*/
public static double divide(double v1, double v2) {
return divide(v1, v2, DEF_DIV_SCALE);
} /**
* 提供(相对)精确的除法运算。当发生除不尽的情况时,由scale参数指定精度,以后的数字四舍五入。
*
* @param v1 被除数
* @param v2 除数
* @param scale 表示表示需要精确到小数点以后几位。
* @return 两个参数的商
*/
public static double divide(double v1, double v2, int scale) {
if (scale < 0) {
throw new IllegalArgumentException(
"The scale must be a positive integer or zero");
}
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.divide(b2, scale, RoundingMode.HALF_EVEN).doubleValue();
} /**
* 提供精确的小数位四舍五入处理。
*
* @param v 需要四舍五入的数字
* @param scale 小数点后保留几位
* @return 四舍五入后的结果
*/
public static double round(double v, int scale) {
if (scale < 0) {
throw new IllegalArgumentException(
"The scale must be a positive integer or zero");
}
BigDecimal b = BigDecimal.valueOf(v);
BigDecimal one = new BigDecimal("1");
return b.divide(one, scale, RoundingMode.HALF_UP).doubleValue();
} /**
* 提供精确的类型转换(Float)
*
* @param v 需要被转换的数字
* @return 返回转换结果
*/
public static float convertToFloat(double v) {
BigDecimal b = new BigDecimal(v);
return b.floatValue();
} /**
* 提供精确的类型转换(Int)不进行四舍五入
*
* @param v 需要被转换的数字
* @return 返回转换结果
*/
public static int convertsToInt(double v) {
BigDecimal b = new BigDecimal(v);
return b.intValue();
} /**
* 提供精确的类型转换(Long)
*
* @param v 需要被转换的数字
* @return 返回转换结果
*/
public static long convertsToLong(double v) {
BigDecimal b = new BigDecimal(v);
return b.longValue();
} /**
* 返回两个数中大的一个值
*
* @param v1 需要被对比的第一个数
* @param v2 需要被对比的第二个数
* @return 返回两个数中大的一个值
*/
public static double returnMax(double v1, double v2) {
BigDecimal b1 = new BigDecimal(v1);
BigDecimal b2 = new BigDecimal(v2);
return b1.max(b2).doubleValue();
} /**
* 返回两个数中小的一个值
*
* @param v1 需要被对比的第一个数
* @param v2 需要被对比的第二个数
* @return 返回两个数中小的一个值
*/
public static double returnMin(double v1, double v2) {
BigDecimal b1 = new BigDecimal(v1);
BigDecimal b2 = new BigDecimal(v2);
return b1.min(b2).doubleValue();
} /**
* 精确对比两个数字
*
* @param v1 需要被对比的第一个数
* @param v2 需要被对比的第二个数
* @return 如果两个数一样则返回0,如果第一个数比第二个数大则返回1,反之返回-1
*/
public static int compareTo(double v1, double v2) {
BigDecimal b1 = BigDecimal.valueOf(v1);
BigDecimal b2 = BigDecimal.valueOf(v2);
return b1.compareTo(b2);
} }

总结

浮点数没有办法用二进制精确表示,因此存在精度丢失的风险。不过,Java 提供了BigDecimal 来操作浮点数。BigDecimal 的实现利用到了 BigInteger (用来操作大整数), 所不同的是 BigDecimal 加入了小数位的概念。

关于作者

来自一线程序员Seven的探索与实践,持续学习迭代中~

本文已收录于我的个人博客:https://www.seven97.top

公众号:seven97,欢迎关注~

金融、支付行业的开发者不得不知道的float、double计算误差问题的更多相关文章

  1. 90%的开发者都不知道的UI本质原理和优化方式

    前言 很多开发者在工作中一直和UI打交道,所以认为UI非常的简单! 事实上对于90%的开发者来说,不知道UI的本质原理. 虽然在开发中,我们在接到产品的UI需求之后,可以走捷径照抄大型APP代码,但是 ...

  2. 90% 前端开发者都不知道的 JavaScript 实用小技巧

    面试神器之数组去重 const a = [...new Set([1, 2, 3, 3])] >> [1, 2, 3] 操作数组担心 falsy 值? const res = myArra ...

  3. [iOS翻译]《iOS 7 Programming Pushing the Limits》系列:你可能不知道的Objective-C技巧

    简介: 如果你阅读这本书,你可能已经牢牢掌握iOS开发的基础,但这里有一些小特点和实践是许多开发者并不熟悉的,甚至有数年经验的开发者也是.在这一章里,你会学到一些很重要的开发技巧,但这仍远远不够,你还 ...

  4. 你所不知道的html5与html中的那些事第三篇

    文章简介: 关于html5相信大家早已经耳熟能详,但是他真正的意义在具体的开发中会有什么作用呢?相对于html,他又有怎样的新的定义与新理念在里面呢?为什么一些专家认为html5完全完成后,所有的工作 ...

  5. 你所不知道的五件事情--java.util.concurrent(第二部分)

    这是Ted Neward在IBM developerWorks中5 things系列文章中的一篇,仍然讲述了关于Java并发集合API的一些应用窍门,值得大家学习.(2010.06.17最后更新) 摘 ...

  6. 关于RecyclerView你知道的不知道的都在这了(下)

    目录 目录 正文 6. Recycler 7. ItemAnimator 8. ItemDecoration 9. OnFlingListener 目录 由于本篇篇幅特长,特意做了个目录,让大伙对本篇 ...

  7. [No0000194]聊聊 Chrome DevTools 中你可能不知道的调试技巧

    对于前端开发者来说,ChromeDevTools 绝对是不可或缺的调试工具,我们常用的调试方法包含一些console等,而ChromeDevTools 其实很强大,下面来聊聊一些你可能不知道的debu ...

  8. JavaScript 优雅的实现方式包含你可能不知道的知识点

    有些东西很好用,但是你未必知道:有些东西你可能用过,但是你未必知道原理. 实现一个目的有多种途径,俗话说,条条大路通罗马.很多内容来自平时的一些收集以及过往博客文章底下的精彩评论,收集整理拓展一波,发 ...

  9. 你所不知道的 CSS 阴影技巧与细节 滚动视差?CSS 不在话下 神奇的选择器 :focus-within 当角色转换为面试官之后 NPOI 教程 - 3.2 打印相关设置 前端XSS相关整理 委托入门案例

    你所不知道的 CSS 阴影技巧与细节   关于 CSS 阴影,之前已经有写过一篇,box-shadow 与 filter:drop-shadow 详解及奇技淫巧,介绍了一些关于 box-shadow  ...

  10. 你所不知道的html5与html中的那些事(三)

    文章简介: 关于html5相信大家早已经耳熟能详,但是他真正的意义在具体的开发中会有什么作用呢?相对于html,他又有怎样的新的定义与新理念在里面呢?为什么一些专家认为html5完全完成后,所有的工作 ...

随机推荐

  1. python重拾基础第二天

    本节内容 列表.元祖操作 字符串操作 字典操作 集合操作 文件操作 字符编码与转码 三元运算&生成式&成员运算&解压法&队列堆栈&数据类型转换 1. 列表操作 ...

  2. 【资料分享】全志科技T507工业核心板硬件说明书(下)

    目    录 3 电气特性 3.1 工作环境 3.2 功耗测试 3.3 热成像图 4 机械尺寸 5 底板设计注意事项 5.1 最小系统设计 5.1.1 电源设计说明 5.1.2 系统启动配置 5.1. ...

  3. Java常见问题-基础

    JDK版本新特性: JDK1.4 正则表达式,异常链,NIO,日志类,XML解析器,XLST转换器 JDK1.5 自动装箱.泛型.动态注解.枚举.可变长参数.遍历循环 JDK1.6 提供动态语言支持. ...

  4. 深入理解 JavaScript 闭包:前端开发中的重要概念

    闭包是 JavaScript 中一个非常重要的概念,对于理解和编写高效.灵活的代码至关重要.尽管它看似复杂,但一旦掌握了闭包,你将能够更好地理解 JavaScript 的函数作用域和变量生命周期.本文 ...

  5. 将mysql的查询结果保存到文件中,并将文件从内网下载到外网服务器

    方法一: 直接执行命令: mysql> SELECT ordersid from yws.callback_clockd  ORDER BY ordersid ASC limit 0,10000 ...

  6. oeasy教您玩转python - 012 - # 刷新时间

    ​ 刷新时间 回忆上次内容 通过搜索 我们学会 import 导入 time 了 time 是一个 module import 他可以做和时间相关的事情 time.time() 得到当前时间戳 tim ...

  7. oeasy教您玩转vim - 90 - # 语法定义syntax

    ​ 内容查找 grep 回忆 我们这次研究了一下配色方案 murphy虽然配色好看 但是对于java的支持并不好 我们对于murphy进行了修改 增加了String.StorageClass颜色的定义 ...

  8. Midnight Commander (MC)

    Midnight Commander GNU Midnight Commander 是一个可视化文件管理器,根据 GNU 通用公共许可证获得许可,因此有资格成为自由软件.它是一个功能丰富的全屏文本模式 ...

  9. 在MySQL中 Truncate Delect Drop 的区别

    在MySQL中 Truncate Delect Drop 的区别 面试问题: -- -- 请详细描述MySQL中TRUNCATE TABLE.DELETE FROM和DROP TABLE三个命令的区别 ...

  10. OpenGL 三角形颜色插值

    1.最懒的方法--Nearest Neighbor对于三角形内的点,离三个顶点谁最近,就赋值为那个顶点对应的颜色. 2.最天真的方法--Distance三角形内一点的值应该来自于三个顶点. 计算距离: ...