背景

最近发现一个叫GroundingDINO的开集目标检测算法,所谓开集目标检测就是能检测的目标类别不局限于训练的类别,这个算法可以通过输入文本的prompt然后输出对应的目标框。可以用来做预标注或者其他应用,比如我们要训练某个细分场景的算法时,我们找不到足够的已经标注的数据,就可以先用这个算法预打标, 与SAM结合,还能做根据text去分割出物体。

GroundingDINO:https://github.com/IDEA-Research/GroundingDINO

将GroundingDINO服务化

为什么要服务化

原始的项目是一个python脚本,不适合单人使用,而不是和团队一起使用。服务化之后,其他人可以通过http请求的方式来访问,而不需要每个人都搭建环境,也便于批量处理数据。

如何服务化

最简单的是通过flask api把python脚本包装一层,这种方式实现简单,但扩展性不够,比如如果想要动态组batch,就需要自己写这部分逻辑。更好的方式是使用成熟的模型推理服务,TorchServe就是其中的一种,比较适合pytorch模型(其实其他格式比如onnx也可以),使用TorchServe,我们只用写好模型的预处理、推理和后处理逻辑,其他的比如实例扩展、动态batch、资源监控这些都不需要我们自己实现。我们有其他模型,也可以用同样的方式服务起来,而不需要为每个模型都写一个服务。因此本文选择TorchServe来作为模型的推理服务。

过程

克隆文末的项目后按顺序执行下面步骤:

1.下载模型

新建一个weights目录,并把下面的模型放入:

wget -q https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth

新建一个bert-base-uncased 目录,下载bert模型:

https://huggingface.co/bert-base-uncased/tree/main

config.json
pytorch_model.bin
tokenizer_config.json
tokenizer.json
vocab.txt

2.制作torchserve镜像

Dockerfile:

FROM pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel
ARG DEBIAN_FRONTEND=noninteractive #for Chinese User, uncomment this line
# COPY sources.list /etc/apt/sources.list RUN apt update && \
apt install openjdk-17-jdk -y RUN apt install git -y #install python packages
COPY requirements.txt /root/
RUN pip install -r /root/requirements.txt --no-cache -i https://repo.huaweicloud.com/repository/pypi/simple/
docker build -t torchserve:groundingdino .

3.转换模型

docker run --rm -it -v $(pwd):/data -w /data torchserve:groundingdino bash -c "torch-model-archiver --model-name groundingdino --version 1.0 --serialized-file weights/groundingdino_swint_ogc.pth --handler grounding_dino_handler.py --extra-files GroundingDINO_SwinT_OGC.py,bert-base-uncased/*"

执行完毕后,将得到一个groundingdino.mar文件。

4.开启服务

根据需要修改服务的配置

docker run -d --name groundingdino -v $(pwd)/model_store:/model_store -p 8080:8080 -p 8081:8081 -p 8082:8082 torchserve:groundingdino bash -c "torchserve --start --foreground --model-store /model_store --models groundingdino=groundingdino.mar"

5.调用服务

import requests
import base64
import time
# URL for the web service
url = "http://ip:8080/predictions/groundingdino"
headers = {"Content-Type": "application/json"} # Input data
with open("test.jpg", "rb") as f:
image = f.read() data = {
"image": base64.b64encode(image).decode("utf-8"), # base64 encoded image or BytesIO
"caption": "steel pipe", # text prompt, split by "." for multiple phrases
"box_threshold": 0.25, # threshold for object detection
"caption_threshold": 0.25 # threshold for text similarity
} # Make the request and display the response resp = requests.post(url=url, headers=headers, json=data)
outputs = resp.json()
'''
the outputs will be like:
{
"boxes": [[0.0, 0.0, 1.0, 1.0]], # list of bounding boxes in xyxy format
"scores": [0.9999998807907104], # list of object detection scores
"phrases": ["steel pipe"] # list of text phrases
} '''

完整项目:GroundingDINO-Service

GroundingDINO(一种开集目标检测算法)服务化,根据文本生成检测框的更多相关文章

  1. Opencv+Yolov3算法实现社交距离安全检测讲解和实战(Social Distance Detector)

    在我们进行交流谈话时,人与人之间总要保持一定的距离,尤其是在疫情的情况下,人与人之间更要保持一定的安全距离,今天给大家来介绍一个检测社交距离的项目,实现社交距离检测器. 社交距离(Social Dis ...

  2. 目标检测算法YOLO算法介绍

    YOLO算法(You Only Look Once) 比如你输入图像是100x100,然后在图像上放一个网络,为了方便讲述,此处使用3x3网格,实际实现时会用更精细的网格(如19x19).基本思想是, ...

  3. 【深度学习】目标检测算法总结(R-CNN、Fast R-CNN、Faster R-CNN、FPN、YOLO、SSD、RetinaNet)

    目标检测是很多计算机视觉任务的基础,不论我们需要实现图像与文字的交互还是需要识别精细类别,它都提供了可靠的信息.本文对目标检测进行了整体回顾,第一部分从RCNN开始介绍基于候选区域的目标检测器,包括F ...

  4. 目标检测算法(1)目标检测中的问题描述和R-CNN算法

    目标检测(object detection)是计算机视觉中非常具有挑战性的一项工作,一方面它是其他很多后续视觉任务的基础,另一方面目标检测不仅需要预测区域,还要进行分类,因此问题更加复杂.最近的5年使 ...

  5. FAIR开源Detectron:整合全部顶尖目标检测算法

    昨天,Facebook AI 研究院(FAIR)开源了 Detectron,业内最佳水平的目标检测平台. 昨天,Facebook AI 研究院(FAIR)开源了 Detectron,业内最佳水平的目标 ...

  6. AI SSD目标检测算法

    Single Shot multibox Detector,简称SSD,是一种目标检测算法. Single Shot意味着SSD属于one stage方法,multibox表示多框预测. CNN 多尺 ...

  7. 第三十一节,目标检测算法之 Faster R-CNN算法详解

    Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal network ...

  8. 第二十九节,目标检测算法之R-CNN算法详解

    Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmenta ...

  9. 目标检测算法之R-CNN算法详解

    R-CNN全称为Region-CNN,它可以说是第一个成功地将深度学习应用到目标检测上的算法.后面提到的Fast R-CNN.Faster R-CNN全部都是建立在R-CNN的基础上的. 传统目标检测 ...

  10. TLD(Tracking-Learning-Detection)一种目标跟踪算法

    原文:http://blog.csdn.net/mysniper11/article/details/8726649 视频介绍网址:http://www.cvchina.info/2011/04/05 ...

随机推荐

  1. AQS 锁核心类详解

    系统性学习,异步IT-BLOG AQS(AbstractQuenedSynchronizer 抽象队列同步器) 是一个用来构建锁和同步器的框架,使用 AQS能简单且高效地构造出应用广泛的大量的同步器, ...

  2. Golang数据结构

    数据类型 不同类型的内存样式图 append,切片添加元素 清空切片的3种方法 清空切片的2种方法 查看变量类型 使用 fmt.Printf package main import "fmt ...

  3. 关于js类的继承

    原型链继承 特点:基于原型链,既是父类的实例,也是子类的实例. 缺点: 无法实现多继承. 构造继承 特点: 可以实现多继承. 缺点: 之能继承父类实例的属性和方法,不能继承原型上的属性和方法. 实例继 ...

  4. ArcGIS JS API加载带参数的rest服务参数被截掉问题处理

    我们在做一些项目的时候,会对ArcGIS的图层服务进行转发,增加一些权限参数以保证数据访问的安全, 但使用ArcGIS JS API加载的时候,对于rest服务?后增加的参数会被截掉. 为解决这个问题 ...

  5. AlphaFold2无痛安装教程(超级详细)

    目录 介绍 环境 安装 CMAKE安装 hmmer安装 HHsuite安装 Kalign安装 OpenMM安装 PDBfixer安装 Python依赖包安装 AlphaFold安装 AlphaFold ...

  6. AI算法测试之浅谈

    作者:京东物流 李云敏 一.人工智能 1.人工智能(AI)是什么 人工智能,英文Artificial Intelligence,简称AI,是利用机器学习技术模拟.延伸和扩展人的智能的理论.方法.技术及 ...

  7. 每日复习——static , 饿汉式方法,懒汉式方法,以及单例设计模式

    1.1.static 的使用 当我们编写一个类时,其实就是在描述其对象的属性和行为,而并没有产生实质上的对象,只有通过 new 关键字才会产生出对象,这时系统才会分配内存空间给对象,其方法才可以供外部 ...

  8. 华为 A800-9000 服务器 离线安装MindX DL

    MindX DL(昇腾深度学习组件)是支持 Atlas 800 训练服务器.Atlas 800 推理服务器的深度学习组件参考设计,提供昇腾 AI 处理器资源管理和监控.昇腾 AI 处理器优化调度.分布 ...

  9. Proxmox VE镜像分析与定制

    Proxmox VE(Proxmox Virtual Environment,简称PVE)是一个开源的服务器虚拟化环境Linux发行版,基于Debian,使用给予Ubuntu的定制内核.相比于其他虚拟 ...

  10. [J2EE:中间件]LOG4J+Slf4J快速入门及日志最佳实践

    1 概述 1.1 常见的Java日志框架及选择 commons-logging和slf4j(slf4j-api.jar)都是日志类库的接口,供客户端使用,而没有提供实现! log4j,logback等 ...