一、梯度下降:目的是为了寻找到最合适的 $w$ 和 $b$ ,让成本函数的值最小
\[w = w - α\frac{\partial J(w,b)}{\partial w}
\]
\[b = b - α\frac{\partial J(w,b)}{\partial b}
\]

其中 \(α\) 的值通常在 \(0 - 1\) 之间,用于控制梯度下降算法的幅度。\(α\) 太大,会造成发散现象,\(α\) 太小,会造成收敛速度太慢。

二、批梯度下降算法(BSD,Bash Gradient descent)

$$\frac{\partial J(w, b)}{\partial w_j} = \sum_{i=1}^{n} (h_{(w,b)}(x^{(i)}) - y^{(i)})x_j^{(i)}$$
$$\frac{\partial J(w, b)}{\partial b_j} = \sum_{i=1}^{n} (h_{(w,b)}(x^{(i)}) - y^{(i)})$$
$$w_j' = w_j - α\frac{\partial J(w,b)}{\partial w_j}$$
$$b' = b - α\frac{\partial J(w,b)}{\partial b}$$
     当我们使用该算法时,每对 $w$ 和 $b$ 计算一次(迭代一次),均要使用到整个数据集。即每次确定 $f$ 的方向时,都用到了整个数据集。

     优点:只要 $α$ 选择合适,最终一定会计算得到最优的 $w$ 和 $b$ 。

     缺点:当数据集忒大的时候,这个工程量可想而知,very very 大。所以不适合大数据集。


Machine Learning - 梯度下降的更多相关文章

  1. [Machine Learning] 梯度下降(BGD)、随机梯度下降(SGD)、Mini-batch Gradient Descent、带Mini-batch的SGD

    一.回归函数及目标函数 以均方误差作为目标函数(损失函数),目的是使其值最小化,用于优化上式. 二.优化方式(Gradient Descent) 1.最速梯度下降法 也叫批量梯度下降法Batch Gr ...

  2. [Machine Learning] 梯度下降法的三种形式BGD、SGD以及MBGD

    在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点. 下面我们以线性回归算法来对三种梯度下降法进行比较. ...

  3. [LNU.Machine Learning.Question.1]梯度下降方法的一些理解

    曾经学习machine learning,在regression这一节,对求解最优化问题的梯度下降方法,理解总是处于字面意义上的生吞活剥. 对梯度的概念感觉费解?到底是标量还是矢量?为什么沿着负梯度方 ...

  4. online learning,batch learning&批量梯度下降,随机梯度下降

    以上几个概念之前没有完全弄清其含义及区别,容易混淆概念,在本文浅析一下: 一.online learning vs batch learning online learning强调的是学习是实时的,流 ...

  5. 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)

    在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...

  6. (2)Deep Learning之线性单元和梯度下降

    往期回顾 在上一篇文章中,我们已经学会了编写一个简单的感知器,并用它来实现一个线性分类器.你应该还记得用来训练感知器的『感知器规则』.然而,我们并没有关心这个规则是怎么得到的.本文通过介绍另外一种『感 ...

  7. 斯坦福大学公开课机器学习:梯度下降运算的学习率a(gradient descent in practice 2:learning rate alpha)

    本章节主要讲怎么确定梯度下降的工作是正确的,第二是怎么选择学习率α,如下图所示: 上图显示的是梯度下降算法迭代过程中的代价函数j(θ)的值,横轴是迭代步数,纵轴是j(θ)的值 如果梯度算法正常工作,那 ...

  8. [Machine Learning] 单变量线性回归(Linear Regression with One Variable) - 线性回归-代价函数-梯度下降法-学习率

    单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方 ...

  9. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  10. [Machine Learning] 国外程序员整理的机器学习资源大全

    本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). 1. C++ 1.1 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C ...

随机推荐

  1. Spring源码 19 IOC getBean方法

    前面实现了 ClassPathXmlApplicationContext 的构造,接下来分析其调用的 getBean 方法. 以 getBean(UserDao.class) 为例. 1 Abstra ...

  2. Linux程序崩溃自启动方法

    linux进程挂掉后,可以通过配置 systemd 来自动启动服务 1.创建 systemd 服务文件,例如:huyang.service,需要放置在系统文件夹 /etc/systemd/system ...

  3. HuffmanTree,哈夫曼树的原理和c++实现

    目录 一.什么是哈夫曼树 二.构造哈夫曼树 三.路径.编码.解码 四.代码 一.什么是哈夫曼树 哈夫曼树又称为最优树. 通过权值来构造树,权值越大,离根节点越近 经常用于无损压缩算法 用于需要优化存储 ...

  4. 学习Source Generators之打包成Nuget使用

    前面我们简单的实现了一个从swagger生成实体类的Generator,在实际使用中,通过nuget包引用使用会更方便,那么本篇文章将介绍如何将Generator打包成Nuget来使用. 打包Nuge ...

  5. HarmonyOS实践之应用状态变量共享

      平时在开发的过程中,我们会在应用中共享数据,在不同的页面间共享信息.虽然常用的共享信息,也可以通过不同页面中组件间信息共享的方式,但有时使用应用级别的状态管理会让开发工作变得简单. 根据不同的使用 ...

  6. HarmonyOS API Version 7版本特性说明

    2020年9月11日,HarmonyOS SDK发布了首个Beta版本,支持基于HarmonyOS的华为智慧屏.智能穿戴.车机设备开发,让广大的开发者正式步入了HarmonyOS应用开发之旅. 开发者 ...

  7. js es6 介绍set,WeakSet

    前言 介绍一下es6 的set 和 weakset 正文 set ES6 提供了新的数据结构 Set.它类似于数组,但是成员的值都是唯一的,没有重复的值. Set 本身是一个构造函数,用来生成 Set ...

  8. Web前端 - Vue

    <!-- id标识vue作用的范围 --> <div id="app"> <!-- {{}} 插值表达式,绑定vue中的data数据 --> { ...

  9. Windows 系统上如何安装 Python 环境(详细教程)

    Windows 系统上如何安装 Python 环境(详细教程) 目前,Python有两个版本,一个是2.x版,一个是3.x版,这两个版本是不兼容的.由于2.x版官方只维护到2020年,所以以3.x版作 ...

  10. C#S7.NET实现西门子PLCDB块数据采集的完整步骤

    前言 本文介绍了如何使用S7.NET库实现对西门子PLC DB块数据的读写,记录了使用计算机仿真,模拟PLC,自至完成测试的详细流程,并重点介绍了在这个过程中的易错点,供参考. 用到的软件: 1.Wi ...