Matplotlib 中的图例是帮助观察者理解图像数据的重要工具。
图例通常包含在图像中,用于解释不同的颜色、形状、标签和其他元素。

1. 主要参数

当不设置图例的参数时,默认的图例是这样的。

import numpy as np
import matplotlib.pyplot as plt x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(x, y1, label="sin")
ax.plot(x, y2, label="cos")
ax.legend()

图例就是右上角的那个部分。
图例的主要参数,其实也就是上例 ax.lengend() 函数的主要参数:

  1. 图例位置相关:loc (位置字符串)
  2. 边框相关:facecolor(背景色),edgecolor(边框颜色),shadow(是否设置阴影)framemon(是否有边框和背景)
  3. 图例的列数:默认是1列多行的格式,ncol(列的个数)

2. 配置示例

通过示例来演示常用的设置。

2.1. 图例位置

fig, ax = plt.subplots(3, 3)
fig.set_size_inches(10, 10) locations = [
["lower left", "lower center", "lower right"],
["center left", "center", "center right"],
["upper left", "upper center", "upper right"],
]
for i in range(3):
for j in range(3):
ax[i, j].plot(x, y1, label="sin")
ax[i, j].plot(x, y2, label="cos")
ax[i, j].legend(loc=locations[i][j])

上面的示例显示了不同位置的图例。

2.2. 图例边框

边框可以设置边框的背景色,边框颜色和是否有阴影。

fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(x, y1, label="sin")
ax.plot(x, y2, label="cos")
ax.legend(facecolor="lightblue", edgecolor="red", shadow=True)

上例中,背景色 lightblue,边框 red,阴影设置为 True

设置无边框比较简单,frameon=False 即可。

fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(x, y1, label="sin")
ax.plot(x, y2, label="cos")
ax.legend(frameon=False)

2.3. 图例分列

图例默认都是一列多行的格式,比如上面的的各个示例,图例都是依次竖着排列下来的。
可以通过 ncol 属性,让图例横着排列。

fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(x, y1, label="sin")
ax.plot(x, y2, label="cos")
ax.legend(frameon=False, loc="upper center", ncol=2)

上面的示例,图例(legend)设置为两列,位于上方中间位置。

2.4. 多个图例

一般的图形都只有一个图例,比如上面的都是这样的,sincos都在一个图例中。
如果图例太多,或者多个图例之间关系不大,也可以创建多个图例。

from matplotlib.legend import Legend

x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)
y3 = np.sin(x + 1)
y4 = np.cos(x + 1) fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
legends = []
legends += ax.plot(x, y1, label="sin1")
legends += ax.plot(x, y2, label="cos1")
legends += ax.plot(x, y3, label="sin2")
legends += ax.plot(x, y4, label="cos2")
ax.legend(legends[:2], ["sin1", "cos1"], loc="upper right") leg = Legend(ax, legends[2:], ["sin2", "cos2"], loc="lower left")
ax.add_artist(leg)

上面的示例中的4个曲线,分成了2个图例来说明。
一个图例在右上角,一个图例在左下角。

2.5. 图例中不同大小的点

最后,介绍一种更复杂的图例显示方式。

首先生成主要几个省市的人口散点图(数据是网络上搜索的),
生成图例的时候,给3个主要的节点500万人,5000万人,1亿人设置的点的大小比例与图中的各个散点数据保持一致。

x = ["广东", "山东", "江苏",
"湖北", "浙江", "吉林",
"甘肃", "宁夏", "青海", "西藏"]
y = np.array([10432, 9578, 7866,
5723, 5442, 2745,
2557, 630, 562, 300]) fig = plt.figure(figsize=[10, 8])
plt.scatter(x, y, c=np.log10(y), s=y/16) #创建图例
for population in [500, 5000, 10000]:
plt.scatter([],[], c='b',
s=population/16,
alpha=0.3,
label=str(population)+" (万人)") plt.legend(scatterpoints=1,
labelspacing=1.5,
title="人口图例",
frameon=False)

3. 总结

图例可以设置成各式各样,本篇介绍的图例设置方式并不是仅仅为了美观,
更重要的是利用这些设置方式帮助用户能够达成以下目的:

  1. 帮助观察者快速了解图像数据:图例提供了关于图像数据的简洁、易于理解的解释,使得观察者能够快速了解图像的主题和内容。
  2. 帮助观察者更好地理解图像细节:在一些复杂的图像中,观察者可能需要花费很多时间才能理解其中的细节。图例可以提供关于图像细节的额外信息,使得观察者能够更好地理解图像。
  3. 帮助观察者发现图像中的异常或者重要信息:图例可以用于指出图像中的异常或者重要信息,帮助观察者更好地理解和分析图像。

【matplotlib基础】--图例的更多相关文章

  1. Matplotlib基础知识

    Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis水平和垂直的轴线 x轴和y轴刻度 tick刻度标示坐标轴的分隔,包括最小刻度和最大刻度 x轴和y轴刻度标签 ...

  2. Matplotlib基础使用

    matplotlib 一.Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis 水平和垂直的轴线 x轴和y轴刻度 tick 刻度标示坐标轴的分隔,包括最小刻度 ...

  3. 妙方之解决matplotlib的图例里的中文呈现小方形

    妙方之解决matplotlib的图例里的中文呈现小方形 分析思路: 每个中文都对应地呈现一个小方形, 不多也不少. 不能说是乱码. 应该是matplotlib的默认字库不支持中文造成的. 应对办法: ...

  4. 数据分析与展示——Matplotlib基础绘图函数示例

    Matplotlib库入门 Matplotlib基础绘图函数示例 pyplot基础图表函数概述 函数 说明 plt.plot(x,y,fmt, ...) 绘制一个坐标图 plt.boxplot(dat ...

  5. Matplotlib基础图形之散点图

    Matplotlib基础图形之散点图 散点图特点: 1.散点图显示两组数据的值,每个点的坐标位置由变量的值决定 2.由一组不连续的点组成,用于观察两种变量的相关性(正相关,负相关,不相关) 3.例如: ...

  6. matplotlib基础

    Matplotlib 基础 注:本文中的程序都默认引入了numpy库和matplotlib库,并且分别简写为np与plt:如果读者不知道怎么使用numpy库,可以移步到这一博客上进行简单的学习 一.简 ...

  7. 模块简介与matplotlib基础

    模块简介与matplotlib基础 1.基本概念 1.1数据分析 对已知的数据进行分析,提取出一些有价值的信息. 1.2数据挖掘 对大量的数据进行分析与挖掘,得到一些未知的,有价值的信息. 1.3数据 ...

  8. python画图matplotlib基础笔记

    numpy~~基础计算库,多维数组处理 scipy~~基于numpy,用于数值计算等等,默认调用intel mkl(高度优化的数学库) pandas~~强大的数据框,基于numpy matplotli ...

  9. 【Matplotlib】图例分开显示

    作图时图例往往都会出现一个图例框内,如果需要不同类型的图例分别显示,比如显示两个图例. 基本上,出现两个图例的话,需要调用两次 legend .第一次调用,你需要将图例保存到一个变量中,然后保存下来. ...

  10. [笔记]SciPy、Matplotlib基础操作

    NumPy.SciPy.Matplotlib,Python下机器学习三大利器.上一篇讲了NumPy基础操作,这节讲讲SciPy和Matplotlib.目前接触到的东西不多,以后再遇到些比较常用的再更新 ...

随机推荐

  1. 手动封装XMLHttpRequest

    自己动手封装一个XMLHttpRequest, 兼容低版本浏览器,自动检测post与get 类型请求,自动参数拼接,参数类型辨别 <!DOCTYPE html> <html> ...

  2. kali系统安装redis步骤

    环境: 攻击机:Kali  5.16.0-kali7-amd64    192.168.13.78 靶机:   Kali  5.16.0-kali7-amd64    192.168.13.94 安装 ...

  3. 用go封装一下封禁功能

    用go封装一下封禁功能 本篇为用go设计开发一个自己的轻量级登录库/框架吧 - 秋玻 - 博客园 (cnblogs.com)的封禁业务篇,会讲讲封禁业务的实现,给库/框架增加新的功能. 源码:http ...

  4. 代码随想录算法训练营Day21 二叉树

    代码随想录算法训练营 代码随想录算法训练营Day21 二叉树| 530.二叉搜索树的最小绝对差 501.二叉搜索树中的众数 236. 二叉树的最近公共祖先 530.二叉搜索树的最小绝对差 题目链接:5 ...

  5. 代码随想录算法训练营Day12 栈与队列

    代码随想录算法训练营 代码随想录算法训练营Day12 栈与队列| 239. 滑动窗口最大值  347.前 K 个高频元素  总结 239. 滑动窗口最大值 给定一个数组 nums,有一个大小为 k 的 ...

  6. EF Core + MySQL 基本增删改查

    前言 基于EF Core + MySQL的基本增删改查,示例是基于.NET6 + EF Core + MySQL 创建实体和数据库.EFCore 数据迁移项目基础上的内容增加.同时也是对基于Canal ...

  7. Atcoder-AGC033C

    看到这道题,是个博弈论,没见过树上的,于是想到在数列里的博弈论,又联想到树的特殊形式----链. 于是我们来讨论一下链的情况(对于没有硬币的点,我们就视为它被删掉了): 讨论链的情况 发现若是选择两端 ...

  8. C++容器(vector、deque、list、map)

    (1) vector:将元素置于一个动态数组中,可以随机存储元素(也就是用索引直接存取). 数组尾部添加或删除元素非常迅速.但在中部或头部就比较费时. *代码演示:* 取: at在下标越界时会抛出异常 ...

  9. java反射机制原理及应用

    java反射机制 反射机制原理示意图 ​ Class.forName(字节码文件) 类.class 对象.getClass() 用法: 根据配置的properties文件(不仅是properties) ...

  10. 前端Vue仿滴滴打车百度地图定位查找附近出租车或门店信息(更新版)

    前端vue仿滴滴打车百度地图定位查找附近出租车或门店信息, 下载完整代码请访问uni-app插件市场地址:https://ext.dcloud.net.cn/plugin?id=12982 效果图如下 ...