KingbaseES大数据量分区表添加主键与索引
KingbaseES大数据量分区表添加主键与索引
一、环境信息:
系统信息:
$ cat /etc/centos-release
CentOS Linux release 8.2.2004 (Core)
$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 1
On-line CPU(s) list: 0
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 1
NUMA node(s): 1
Vendor ID: AuthenticAMD
CPU family: 23
Model: 24
Model name: AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx
Stepping: 1
CPU MHz: 2096.060
BogoMIPS: 4192.12
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32K
L1i cache: 64K
L2 cache: 512K
L3 cache: 4096K
NUMA node0 CPU(s): 0
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid tsc_known_freq pni pclmulqdq monitor ssse3 cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx rdrand hypervisor lahf_lm cr8_legacy abm sse4a misalignsse 3dnowprefetch ssbd vmmcall fsgsbase avx2 rdseed clflushopt arat
$ lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x000000000fffffff 256M online no 0-1
0x0000000010000000-0x000000001fffffff 256M online yes 2-3
0x0000000020000000-0x0000000047ffffff 640M online no 4-8
0x0000000048000000-0x000000004fffffff 128M online yes 9
0x0000000050000000-0x000000007fffffff 768M online no 10-15
Memory block size: 128M
Total online memory: 2G
Total offline memory: 0B
$ df -Th
Filesystem Type Size Used Avail Use% Mounted on
devtmpfs devtmpfs 977M 0 977M 0% /dev
tmpfs tmpfs 994M 20K 994M 1% /dev/shm
tmpfs tmpfs 994M 8.5M 986M 1% /run
tmpfs tmpfs 994M 0 994M 0% /sys/fs/cgroup
/dev/mapper/cl_node2-root xfs 37G 2.9G 35G 8% /
/dev/sda1 ext4 976M 110M 799M 13% /boot
tmpfs tmpfs 199M 0 199M 0% /run/user/0
tmpfs tmpfs 199M 0 199M 0% /run/user/1000
二、初始化测试环境
# kingbase.conf除开启归档外,其余参数均为initdb初始化默认值
archive_mode=on
# 数据库版本信息
KingbaseES V008R006C007B0012 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.1.2 20080704 (Red Hat 4.1.2-46), 64-bit
1. 创建分区表:
create table tb(id bigint,stat date,no bigint,pdate date,info varchar2(50)) partition by range(pdate) INTERVAL ('1 MONTH'::INTERVAL)
(
PARTITION tb_p0 VALUES LESS THAN ('2019-01-01'),
PARTITION tb_p1 VALUES LESS THAN ('2019-02-01'),
PARTITION tb_p2 VALUES LESS THAN ('2019-03-01'),
PARTITION tb_p3 VALUES LESS THAN ('2019-04-01'),
PARTITION tb_p4 VALUES LESS THAN ('2019-05-01')
);
2. 创建随机日期、数字函数:
# 随机数函数
CREATE OR REPLACE FUNCTION RANDOM_NUMBER(INTEGER, INTEGER) RETURNS INTEGER AS
$BODY$
DECLARE
START_INT ALIAS FOR $1;
END_INT ALIAS FOR $2;
BEGIN
RETURN trunc(random() * (END_INT - START_INT + 1) + START_INT);
END;
$BODY$
LANGUAGE plpgsql;
# 随机日期函数
CREATE OR REPLACE FUNCTION RANDOM_DAYS(START_DATE DATE, END_DATE DATE) RETURNS DATE AS
$BODY$
DECLARE
INTERVAL_DAYS INTEGER;
RANDOM_DAYS INTEGER;
RANDOM_DATE DATE;
BEGIN
INTERVAL_DAYS := END_DATE - START_DATE;
RANDOM_DAYS := RANDOM_NUMBER(0, INTERVAL_DAYS);
RANDOM_DATE := START_DATE + RANDOM_DAYS;
RETURN RANDOM_DATE;
END;
$BODY$
LANGUAGE plpgsql;
3. insert插入1亿条数据:
插入1亿条数据用时34分41秒,表大小为9.6GB
test=# insert into tb select generate_series(1,100000000),clock_timestamp(),RANDOM_NUMBER(1,100000000),RANDOM_DAYS('2019-01-01'::date,'2019-05-31'::date),md5(random()::text) from dual;
INSERT 0 100000000
Time: 2081789.125 ms (34:41.789)
test=# select sys_size_pretty(sys_relation_size('tb_tb_p0'));
sys_size_pretty
-----------------
0 bytes
(1 row)
Time: 36.671 ms
test=# select sys_size_pretty(sys_relation_size('tb_tb_p1'));
sys_size_pretty
-----------------
1980 MB
(1 row)
Time: 0.648 ms
test=# select sys_size_pretty(sys_relation_size('tb_tb_p2'));
sys_size_pretty
-----------------
1788 MB
(1 row)
Time: 0.591 ms
test=# select sys_size_pretty(sys_relation_size('tb_tb_p3'));
sys_size_pretty
-----------------
1981 MB
(1 row)
Time: 0.551 ms
test=# select sys_size_pretty(sys_relation_size('tb_tb_p4'));
sys_size_pretty
-----------------
1916 MB
(1 row)
Time: 0.674 ms
test=# select sys_size_pretty(sys_relation_size('tb_p5'));
sys_size_pretty
-----------------
1980 MB
(1 row)
Time: 0.668 ms
4. 添加主键:
添加主键用时3分钟14秒
test=# alter table tb add constraint tb_pk primary key(id,no);
ALTER TABLE
Time: 194581.732 ms (03:14.582)
test=# \d+ tb
Partitioned table "public.tb"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+----------------------------+-----------+----------+---------+----------+--------------+-------------
id | bigint | | not null | | plain | |
stat | date | | | | plain | |
no | bigint | | not null | | plain | |
pdate | date | | | | plain | |
info | character varying(50 char) | | | | extended | |
Partition key: RANGE (pdate)
Range interval: INTERVAL ('0-1'::pg_catalog.interval)
Indexes:
"tb_pk" PRIMARY KEY, btree (id, no) INCLUDE (tableoid) GLOBAL
Partitions: tb_p5 FOR VALUES FROM ('2019-05-01 00:00:00') TO ('2019-06-01 00:00:00'),
tb_tb_p0 FOR VALUES FROM (MINVALUE) TO ('2019-01-01 00:00:00'),
tb_tb_p1 FOR VALUES FROM ('2019-01-01 00:00:00') TO ('2019-02-01 00:00:00'),
tb_tb_p2 FOR VALUES FROM ('2019-02-01 00:00:00') TO ('2019-03-01 00:00:00'),
tb_tb_p3 FOR VALUES FROM ('2019-03-01 00:00:00') TO ('2019-04-01 00:00:00'),
tb_tb_p4 FOR VALUES FROM ('2019-04-01 00:00:00') TO ('2019-05-01 00:00:00')
5. 创建组合索引:
创建组合索引用时4分钟08秒
# 创建local本地索引
test=# create index on tb(id,stat,no,info);
CREATE INDEX
Time: 248144.207 ms (04:08.144)
test=# \d+ tb
Partitioned table "public.tb"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+----------------------------+-----------+----------+---------+----------+--------------+-------------
id | bigint | | not null | | plain | |
stat | date | | | | plain | |
no | bigint | | not null | | plain | |
pdate | date | | | | plain | |
info | character varying(50 char) | | | | extended | |
Partition key: RANGE (pdate)
Range interval: INTERVAL ('0-1'::pg_catalog.interval)
Indexes:
"tb_pk" PRIMARY KEY, btree (id, no) INCLUDE (tableoid) GLOBAL
"tb_id_stat_no_info_idx" btree (id, stat, no, info)
Partitions: tb_p5 FOR VALUES FROM ('2019-05-01 00:00:00') TO ('2019-06-01 00:00:00'),
tb_tb_p0 FOR VALUES FROM (MINVALUE) TO ('2019-01-01 00:00:00'),
tb_tb_p1 FOR VALUES FROM ('2019-01-01 00:00:00') TO ('2019-02-01 00:00:00'),
tb_tb_p2 FOR VALUES FROM ('2019-02-01 00:00:00') TO ('2019-03-01 00:00:00'),
tb_tb_p3 FOR VALUES FROM ('2019-03-01 00:00:00') TO ('2019-04-01 00:00:00'),
tb_tb_p4 FOR VALUES FROM ('2019-04-01 00:00:00') TO ('2019-05-01 00:00:00')
test=# \d+ tb_tb_p2
Table "public.tb_tb_p2"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+----------------------------+-----------+----------+---------+----------+--------------+-------------
id | bigint | | not null | | plain | |
stat | date | | | | plain | |
no | bigint | | not null | | plain | |
pdate | date | | | | plain | |
info | character varying(50 char) | | | | extended | |
Partition of: tb FOR VALUES FROM ('2019-02-01 00:00:00') TO ('2019-03-01 00:00:00')
Partition constraint: (((pdate IS NULL) OR ((pdate)::timestamp without time zone >= '2019-02-01 00:00:00'::date)) AND ((pdate IS NOT NULL) AND ((pdate)::timestamp without time zone < '2019-03-01 00:00:00'::date)))
Indexes:
"tb_tb_p2_id_stat_no_info_idx" btree (id, stat, no, info)
Access method: heap
# 使用global创建全局索引
# 查询表信息,发现使用global声明创建的索引也是local本地索引
test=# create index on tb(id,stat) global;
CREATE INDEX
Time: 151558.143 ms (02:31.558)
test=# \d+ tb
Partitioned table "public.tb"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+----------------------------+-----------+----------+---------+----------+--------------+-------------
id | bigint | | not null | | plain | |
stat | date | | | | plain | |
no | bigint | | not null | | plain | |
pdate | date | | | | plain | |
info | character varying(50 char) | | | | extended | |
Partition key: RANGE (pdate)
Range interval: INTERVAL ('0-1'::pg_catalog.interval)
Indexes:
"tb_pk" PRIMARY KEY, btree (id, no) INCLUDE (tableoid) GLOBAL
"tb_id_stat_idx" btree (id, stat)
Partitions: tb_p5 FOR VALUES FROM ('2019-05-01 00:00:00') TO ('2019-06-01 00:00:00'),
tb_tb_p0 FOR VALUES FROM (MINVALUE) TO ('2019-01-01 00:00:00'),
tb_tb_p1 FOR VALUES FROM ('2019-01-01 00:00:00') TO ('2019-02-01 00:00:00'),
tb_tb_p2 FOR VALUES FROM ('2019-02-01 00:00:00') TO ('2019-03-01 00:00:00'),
tb_tb_p3 FOR VALUES FROM ('2019-03-01 00:00:00') TO ('2019-04-01 00:00:00'),
tb_tb_p4 FOR VALUES FROM ('2019-04-01 00:00:00') TO ('2019-05-01 00:00:00')
test=# \d+ tb_tb_p4
Table "public.tb_tb_p4"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+----------------------------+-----------+----------+---------+----------+--------------+-------------
id | bigint | | not null | | plain | |
stat | date | | | | plain | |
no | bigint | | not null | | plain | |
pdate | date | | | | plain | |
info | character varying(50 char) | | | | extended | |
Partition of: tb FOR VALUES FROM ('2019-04-01 00:00:00') TO ('2019-05-01 00:00:00')
Partition constraint: (((pdate IS NULL) OR ((pdate)::timestamp without time zone >= '2019-04-01 00:00:00'::date)) AND ((pdate IS NOT NULL) AND ((pdate)::timestamp without time zone < '2019-05-01 00:00:00'::date)))
Indexes:
"tb_tb_p4_id_stat_idx" btree (id, stat)
Access method: heap
# 使用unique加分区键pdate创建全局索引(global声明)
# 查询表信息,创建的索引依然是local本地索引
test=# create unique index ON tb(id,pdate) global;
CREATE INDEX
Time: 87232.640 ms (01:27.233)
test=# \d+ tb
Partitioned table "public.tb"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+----------------------------+-----------+----------+---------+----------+--------------+-------------
id | bigint | | | | plain | |
stat | date | | | | plain | |
no | bigint | | | | plain | |
pdate | date | | | | plain | |
info | character varying(50 char) | | | | extended | |
Partition key: RANGE (pdate)
Range interval: INTERVAL ('0-1'::pg_catalog.interval)
Indexes:
"tb_id_pdate_idx" UNIQUE, btree (id, pdate)
Partitions: tb_p5 FOR VALUES FROM ('2019-05-01 00:00:00') TO ('2019-06-01 00:00:00'),
tb_tb_p0 FOR VALUES FROM (MINVALUE) TO ('2019-01-01 00:00:00'),
tb_tb_p1 FOR VALUES FROM ('2019-01-01 00:00:00') TO ('2019-02-01 00:00:00'),
tb_tb_p2 FOR VALUES FROM ('2019-02-01 00:00:00') TO ('2019-03-01 00:00:00'),
tb_tb_p3 FOR VALUES FROM ('2019-03-01 00:00:00') TO ('2019-04-01 00:00:00'),
tb_tb_p4 FOR VALUES FROM ('2019-04-01 00:00:00') TO ('2019-05-01 00:00:00')
# 使用unique加非分区键创建全局索引(global声明)
# 查询表信息,全局索引创建成功
test=# create unique index ON tb(id,info) global;
CREATE INDEX
test=# \d+ tb
Partitioned table "public.tb"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+----------------------------+-----------+----------+---------+----------+--------------+-------------
id | bigint | | | | plain | |
stat | date | | | | plain | |
no | bigint | | | | plain | |
pdate | date | | | | plain | |
info | character varying(50 char) | | | | extended | |
Partition key: RANGE (pdate)
Range interval: INTERVAL ('0-1'::pg_catalog.interval)
Indexes:
"tb_id_info_idx" UNIQUE, btree (id, info) INCLUDE (tableoid) GLOBAL
Partitions: tb_p5 FOR VALUES FROM ('2019-05-01 00:00:00') TO ('2019-06-01 00:00:00'),
tb_tb_p0 FOR VALUES FROM (MINVALUE) TO ('2019-01-01 00:00:00'),
tb_tb_p1 FOR VALUES FROM ('2019-01-01 00:00:00') TO ('2019-02-01 00:00:00'),
tb_tb_p2 FOR VALUES FROM ('2019-02-01 00:00:00') TO ('2019-03-01 00:00:00'),
tb_tb_p3 FOR VALUES FROM ('2019-03-01 00:00:00') TO ('2019-04-01 00:00:00'),
tb_tb_p4 FOR VALUES FROM ('2019-04-01 00:00:00') TO ('2019-05-01 00:00:00')
总结:
1 添加主键的同时会创建主键列(字段)唯一索引(但是有唯一索引的列不一定是主键)。
2 主键字段不允许空值,添加主键过程中会自动添加not null非空约束,保证主键列值的唯一性。
3 分区表添加主键同时创建的索引(索引有GLOBAL)是全局索引。
4 在分区表创建索引(默认为local本地索引,全局索引需要global声明),会自动在每个分区上创建一个本地索引。
5 分区表会在主键列创建一个全局(global)索引,默认为添加主键列的同时创建全局索引。
6 分区表惟一约束必须包含分区键。
7 分区表成功创建全局索引必须满足条件:索引类型是唯一索引(unique)并且不包含分区键 。
三、设置数据库参数创建主键与索引
1. 添加主键:
先设置字段非空not null约束,然后再添加主键。效率有提升。
test=# alter table tb alter column id set not null;
ALTER TABLE
Time: 37.610 ms
test=# alter table tb alter column no set not null;
ALTER TABLE
Time: 3.629 ms
test=# alter table tb add constraint tb_pk primary key(id,no);
ALTER TABLE
Time: 161859.979 ms (02:41.860)
test=# \d+ tb
Partitioned table "public.tb"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+----------------------------+-----------+----------+---------+----------+--------------+-------------
id | bigint | | not null | | plain | |
stat | date | | | | plain | |
no | bigint | | not null | | plain | |
pdate | date | | | | plain | |
info | character varying(50 char) | | | | extended | |
Partition key: RANGE (pdate)
Range interval: INTERVAL ('0-1'::pg_catalog.interval)
Indexes:
"tb_pk" PRIMARY KEY, btree (id, no) INCLUDE (tableoid) GLOBAL
Partitions: tb_p5 FOR VALUES FROM ('2019-05-01 00:00:00') TO ('2019-06-01 00:00:00'),
tb_tb_p0 FOR VALUES FROM (MINVALUE) TO ('2019-01-01 00:00:00'),
tb_tb_p1 FOR VALUES FROM ('2019-01-01 00:00:00') TO ('2019-02-01 00:00:00'),
tb_tb_p2 FOR VALUES FROM ('2019-02-01 00:00:00') TO ('2019-03-01 00:00:00'),
tb_tb_p3 FOR VALUES FROM ('2019-03-01 00:00:00') TO ('2019-04-01 00:00:00'),
tb_tb_p4 FOR VALUES FROM ('2019-04-01 00:00:00') TO ('2019-05-01 00:00:00')
2. 设置work_mem、maintenance_work_mem、temp_buffers参数然后添加主键:
设置数据库参数、添加非空not null约束后添加主键用时2分50秒
test=# set work_mem ='100MB';
SET
test=# set maintenance_work_mem ='500MB';
SET
test=# set temp_buffers ='100MB';
SET
# 然后设置非空约束not null添加主键
test=# alter table tb alter column id set not null;
ALTER TABLE
Time: 20.714 ms
test=# alter table tb alter column no set not null;
ALTER TABLE
Time: 2.202 ms
test=# alter table tb add constraint tb_pk primary key(id,no);
ALTER TABLE
Time: 170640.065 ms (02:50.640)
test=# \d+ tb
Partitioned table "public.tb"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+----------------------------+-----------+----------+---------+----------+--------------+-------------
id | bigint | | not null | | plain | |
stat | date | | | | plain | |
no | bigint | | not null | | plain | |
pdate | date | | | | plain | |
info | character varying(50 char) | | | | extended | |
Partition key: RANGE (pdate)
Range interval: INTERVAL ('0-1'::pg_catalog.interval)
Indexes:
"tb_pk" PRIMARY KEY, btree (id, no) INCLUDE (tableoid) GLOBAL
Partitions: tb_p5 FOR VALUES FROM ('2019-05-01 00:00:00') TO ('2019-06-01 00:00:00'),
tb_tb_p0 FOR VALUES FROM (MINVALUE) TO ('2019-01-01 00:00:00'),
tb_tb_p1 FOR VALUES FROM ('2019-01-01 00:00:00') TO ('2019-02-01 00:00:00'),
tb_tb_p2 FOR VALUES FROM ('2019-02-01 00:00:00') TO ('2019-03-01 00:00:00'),
tb_tb_p3 FOR VALUES FROM ('2019-03-01 00:00:00') TO ('2019-04-01 00:00:00'),
tb_tb_p4 FOR VALUES FROM ('2019-04-01 00:00:00') TO ('2019-05-01 00:00:00')
通过以上设置数据库参数,分区表添加非空not null约束可以看出,大数据量的分区表添加主键性能是有明显提升。
3. 创建索引:
# 创建本地local索引
test=# create index on tb(id,stat,no,info);
CREATE INDEX
Time: 250377.917 ms (04:10.378)
test=# \d+ tb
Partitioned table "public.tb"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+----------------------------+-----------+----------+---------+----------+--------------+-------------
id | bigint | | not null | | plain | |
stat | date | | | | plain | |
no | bigint | | not null | | plain | |
pdate | date | | | | plain | |
info | character varying(50 char) | | | | extended | |
Partition key: RANGE (pdate)
Range interval: INTERVAL ('0-1'::pg_catalog.interval)
Indexes:
"tb_pk" PRIMARY KEY, btree (id, no) INCLUDE (tableoid) GLOBAL
"tb_id_stat_no_info_idx" btree (id, stat, no, info)
Partitions: tb_p5 FOR VALUES FROM ('2019-05-01 00:00:00') TO ('2019-06-01 00:00:00'),
tb_tb_p0 FOR VALUES FROM (MINVALUE) TO ('2019-01-01 00:00:00'),
tb_tb_p1 FOR VALUES FROM ('2019-01-01 00:00:00') TO ('2019-02-01 00:00:00'),
tb_tb_p2 FOR VALUES FROM ('2019-02-01 00:00:00') TO ('2019-03-01 00:00:00'),
tb_tb_p3 FOR VALUES FROM ('2019-03-01 00:00:00') TO ('2019-04-01 00:00:00'),
tb_tb_p4 FOR VALUES FROM ('2019-04-01 00:00:00') TO ('2019-05-01 00:00:00')
# 使用global创建全局索引
test=# create index on tb(id,stat) global;
CREATE INDEX
Time: 160475.453 ms (02:40.475)
test=# \d+ tb
Partitioned table "public.tb"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+----------------------------+-----------+----------+---------+----------+--------------+-------------
id | bigint | | not null | | plain | |
stat | date | | | | plain | |
no | bigint | | not null | | plain | |
pdate | date | | | | plain | |
info | character varying(50 char) | | | | extended | |
Partition key: RANGE (pdate)
Range interval: INTERVAL ('0-1'::pg_catalog.interval)
Indexes:
"tb_pk" PRIMARY KEY, btree (id, no) INCLUDE (tableoid) GLOBAL
"tb_id_stat_idx" btree (id, stat)
Partitions: tb_p5 FOR VALUES FROM ('2019-05-01 00:00:00') TO ('2019-06-01 00:00:00'),
tb_tb_p0 FOR VALUES FROM (MINVALUE) TO ('2019-01-01 00:00:00'),
tb_tb_p1 FOR VALUES FROM ('2019-01-01 00:00:00') TO ('2019-02-01 00:00:00'),
tb_tb_p2 FOR VALUES FROM ('2019-02-01 00:00:00') TO ('2019-03-01 00:00:00'),
tb_tb_p3 FOR VALUES FROM ('2019-03-01 00:00:00') TO ('2019-04-01 00:00:00'),
tb_tb_p4 FOR VALUES FROM ('2019-04-01 00:00:00') TO ('2019-05-01 00:00:00')
从以上结果可以看出,设置数据库参数、分区表非空not null约束,添加主键的性能有提升。但是创建索引的性能无明显提升。
四、其他方式
1. 使用on only创建索引:
优点:创建索引时不会阻止对分区表的并发插入、更新或者删除操作。
缺点:分区表父表不支持CONCURRENTLY、parallel_workers选项,子分区支持CONCURRENTLY、parallel_workers选项。
1 使用on only创建失效invalid索引,使所有的子分区不会自动应用该索引:
test=# create index tb_idx on only tb(id,stat,no,info);
CREATE INDEX
Time: 21.135 ms
test=# \d+ tb
Partitioned table "public.tb"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+----------------------------+-----------+----------+---------+----------+--------------+-------------
id | bigint | | not null | | plain | |
stat | date | | | | plain | |
no | bigint | | not null | | plain | |
pdate | date | | | | plain | |
info | character varying(50 char) | | | | extended | |
Partition key: RANGE (pdate)
Range interval: INTERVAL ('0-1'::pg_catalog.interval)
Indexes:
"tb_pk" PRIMARY KEY, btree (id, no) INCLUDE (tableoid) GLOBAL
"tb_idx" btree (id, stat, no, info) INVALID
Partitions: tb_p5 FOR VALUES FROM ('2019-05-01 00:00:00') TO ('2019-06-01 00:00:00'),
tb_tb_p0 FOR VALUES FROM (MINVALUE) TO ('2019-01-01 00:00:00'),
tb_tb_p1 FOR VALUES FROM ('2019-01-01 00:00:00') TO ('2019-02-01 00:00:00'),
tb_tb_p2 FOR VALUES FROM ('2019-02-01 00:00:00') TO ('2019-03-01 00:00:00'),
tb_tb_p3 FOR VALUES FROM ('2019-03-01 00:00:00') TO ('2019-04-01 00:00:00'),
tb_tb_p4 FOR VALUES FROM ('2019-04-01 00:00:00') TO ('2019-05-01 00:00:00')
2 然后手动创建分区表子分区索引:
# 手动给分区表子分区创建索引
test=# create index tb_tb_p0_idx on tb_tb_p0(id,stat,no,info);
CREATE INDEX
Time: 5.469 ms
test=# create index tb_tb_p1_idx on tb_tb_p1(id,stat,no,info);
CREATE INDEX
Time: 50423.600 ms (00:50.424)
test=# create index tb_tb_p2_idx on tb_tb_p2(id,stat,no,info);
CREATE INDEX
Time: 46672.063 ms (00:46.672)
test=# create index tb_tb_p3_idx on tb_tb_p3(id,stat,no,info);
CREATE INDEX
Time: 50621.904 ms (00:50.622)
test=# create index tb_tb_p4_idx on tb_tb_p4(id,stat,no,info);
CREATE INDEX
Time: 49248.159 ms (00:49.248)
test=# create index tb_p5_idx on tb_p5(id,stat,no,info);
CREATE INDEX
Time: 52901.838 ms (00:52.902)
# 然后使用ALTER INDEX .. ATTACH PARTITION到父索引
test=# alter index tb_idx attach partition tb_tb_p0_idx;
ALTER INDEX
Time: 5.326 ms
test=# alter index tb_idx attach partition tb_tb_p1_idx;
ALTER INDEX
Time: 2.688 ms
test=# alter index tb_idx attach partition tb_tb_p2_idx;
ALTER INDEX
Time: 2.908 ms
test=# alter index tb_idx attach partition tb_tb_p3_idx;
ALTER INDEX
Time: 3.608 ms
test=# alter index tb_idx attach partition tb_tb_p4_idx;
ALTER INDEX
Time: 2.332 ms
test=# alter index tb_idx attach partition tb_p5_idx;
ALTER INDEX
Time: 37.518 ms
# 所有的子分区索引都附加到父索引后,父索引将自动标记为有效
test=# \d+ tb
Partitioned table "public.tb"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+----------------------------+-----------+----------+---------+----------+--------------+-------------
id | bigint | | not null | | plain | |
stat | date | | | | plain | |
no | bigint | | not null | | plain | |
pdate | date | | | | plain | |
info | character varying(50 char) | | | | extended | |
Partition key: RANGE (pdate)
Range interval: INTERVAL ('0-1'::pg_catalog.interval)
Indexes:
"tb_pk" PRIMARY KEY, btree (id, no) INCLUDE (tableoid) GLOBAL
"tb_idx" btree (id, stat, no, info)
Partitions: tb_p5 FOR VALUES FROM ('2019-05-01 00:00:00') TO ('2019-06-01 00:00:00'),
tb_tb_p0 FOR VALUES FROM (MINVALUE) TO ('2019-01-01 00:00:00'),
tb_tb_p1 FOR VALUES FROM ('2019-01-01 00:00:00') TO ('2019-02-01 00:00:00'),
tb_tb_p2 FOR VALUES FROM ('2019-02-01 00:00:00') TO ('2019-03-01 00:00:00'),
tb_tb_p3 FOR VALUES FROM ('2019-03-01 00:00:00') TO ('2019-04-01 00:00:00'),
tb_tb_p4 FOR VALUES FROM ('2019-04-01 00:00:00') TO ('2019-05-01 00:00:00')
test=# \d+ tb_tb_p3
Table "public.tb_tb_p3"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+----------------------------+-----------+----------+---------+----------+--------------+-------------
id | bigint | | not null | | plain | |
stat | date | | | | plain | |
no | bigint | | not null | | plain | |
pdate | date | | | | plain | |
info | character varying(50 char) | | | | extended | |
Partition of: tb FOR VALUES FROM ('2019-03-01 00:00:00') TO ('2019-04-01 00:00:00')
Partition constraint: (((pdate IS NULL) OR ((pdate)::timestamp without time zone >= '2019-03-01 00:00:00'::date)) AND ((pdate IS NOT NULL) AND ((pdate)::timestamp without time zone < '2019-04-01 00:00:00'::date)))
Indexes:
"tb_tb_p3_idx" btree (id, stat, no, info)
Access method: heap
总结:
分区表父表不支持CONCURRENTLY、parallel_workers选项,但是子分区支持CONCURRENTLY、parallel_workers选项。
可以使用on only方式在父表创建失效的索引,设置子分区表CONCURRENTLY、parallel_workers选项,手动创建子分区索引,然后使用ALTER INDEX .. ATTACH PARTITION到父索引,父索引会自动标记为有效。
同时分区表也不支持以下添加主键语法:
create unique index tb_idx on tb(id);
alter table tb ADD CONSTRAINT tb_pk PRIMARY KEY using index tb_idx;
KingbaseES大数据量分区表添加主键与索引的更多相关文章
- Oracle 添加主键和索引
数据的主键和索引一般情况下都是必须的,特别是表有大量数据的时候,索引和主键更是必不可少,这样可以提供数据的查询效率: 一.创建表的同时创建主键约束 (1)无命名 create table studen ...
- SQL语句新建表,同时添加主键、索引、约束
SQL语句新建数据表 主键,索引,约束 CREATE TABLE [dbo].[T_SendInsideMessageRec]( [SendInsideMID] [uniqueidentifier ...
- MySQL添加主键、索引
查看索引 SHOW INDEX FROM 数据库表名 比如:SHOW INDEX FROM order_info; 添加索引 alter table 数据库add index 索引名称(数据库字段 ...
- Sqlserver大数据量分区表创建
/* 逆向删除对象 DROP PARTITION SCHEME [PS_BasicPolicy2014]; DROP PARTITION FUNCTION [PF_BasicPolicy2014]; ...
- SqlServer数据库优化之添加主键和自增长
今天需要给有500万条数据的表添加主键和自增长列,其中最大的难度在于如何UPDATE这500万多条数据,开始吧! 1.先给表添加一个字段叫ID,并允许空 2.查询表,我想到了使用其中的时间列排序来创建 ...
- mysql百万级别重排主键id(网上的删除重建id在大数据量下会出错)
网上教程: 先删除旧的主键 再新建主键 :数据量少时没问题,不会出现主键自增空缺间隔的情况(如:1,2,3,5):但是大数据量时会出现如上所述问题(可能是内部mysql多进程或多线程同时操作引起问题) ...
- Oracle并行添加主键的方法
环境:Oracle 11.2.0.3 需求:生产一张表由于前期设计不当,没有主键.现需要添加主键,数据量很大,想并行建立. 1.直接添加,提示ora-3001:未实施的功能;只能单线程建立主键 S ...
- MySQL 大数据量快速插入方法和语句优化
MySQL大数据量快速插入方法和语句优化是本文我们主要要介绍的内容,接下来我们就来一一介绍,希望能够让您有所收获! INSERT语句的速度 插入一个记录需要的时间由下列因素组成,其中的数字表示大约比例 ...
- Oracle不能并行直接添加主键的方法:先建唯一索引后建主键
环境:Oracle 11.2.0.3 需求:生产一张表由于前期设计不当,没有主键.现需要添加主键,数据量很大,想并行建立. 1.直接添加,提示ora-3001:未实施的功能;只能单线程建立主键 SQL ...
- (转)SqlServer为大数据量表建索引
本文转载自:http://blog.csdn.net/iangujun/article/details/8136764 之前从没有用SqlServer数据库处理过大数据量的表,都是用Oracle,然后 ...
随机推荐
- 机器学习策略篇:详解为什么是ML策略?(Why ML Strategy?)
为什么是ML策略? 从一个启发性的例子开始讲,假设正在调试的猫分类器,经过一段时间的调整,系统达到了90%准确率,但对的应用程序来说还不够好. 可能有很多想法去改善的系统,比如,可能想去收集更多的训练 ...
- SuspendThread and ResumeThread
记录下,用于复现 #include <windows.h> #include <iostream> LRESULT CALLBACK WndProc(HWND hWnd, UI ...
- python内置模块argparse的使用
官网文档 https://docs.python.org/3/howto/argparse.html # 简易教程 https://docs.python.org/3/library/argparse ...
- django1.11和django2.2中namespace的用法
django1.11中namespace用法 urlpatterns = [ url(r'^user/', include('user.urls', namespace='user')) ] djan ...
- 新来个架构师,用48张图把OpenFeign原理讲的炉火纯青~~
大家好,我是三友~~ 在很久之前,我写过两篇关于OpenFeign和Ribbon这两个SpringCloud核心组件架构原理的文章 但是说实话,从我现在的角度来看,这两篇文章的结构和内容其实还可以更加 ...
- C语言变量和数据类型整理
03-变量和数据类型 3.1 大话C语言变量和数据类型 在<数据在内存中的存储>一节中讲到: ●计算机要处理的数据(诸如数字.文字.符号.图形.音频.视频等)是以二进制的形式存放在内存中的 ...
- 第140篇:微信小程序的登录流程
好家伙,补补补 顶不住了,跑不掉了,这部分的知识还是要补上 来看看微信小程序登录的完整流程 最左边的一列就是前端负责的部分了 几个关键的参数: code:一个用户登录凭证,就是一个临时的t ...
- 【Azure 服务总线】使用Azure Service Bus 时,出现证书错误: 所使用的证书具有无法验证的信任链
问题描述 在Azure中连接 Service Bus 服务发送消息时发生证书错误,抛出证书异常消息: 或 The X.509 certificate CN=servicebus.chinaclouda ...
- 【Azure 应用服务】在Azure App Service多实例的情况下,如何在应用中通过代码获取到实例名(Instance ID)呢?
问题描述 App Service开启多实例后,如何在代码中获取当前请求所真实到达的实例ID(Instance ID)呢? 问题答案 App Service 通过 环境变量的方式 显示的输出实例ID等信 ...
- 主流开源分布式图计算框架 Benchmark
本文由美团 NLP 团队高辰.赵登昌撰写,首发于 Nebula Graph Community 公众号 前言 随着近年来数据的爆炸式增长,如何高效地分析处理数据,在业界一直备受关注.现实世界中的数据往 ...