#Kruskal重构树,Dijkstra,倍增#洛谷 4768 [NOI2018]归程
分析
首先Dijkstra是必需的(关于SPFA,它死了233)
无向图,所以先求出1号节点到所有点的距离,然后肯定希望起点能驾驶到离一号点最短的汽车可到的地方
但是怎么办,考虑海拔大的边肯定会更想选,那为什么不用Kruskal建出一棵最大生成树
但是怎么求呢,Kruskal重构树横空出世,通过用新点连接原来两点,建起一棵\(2n-1\)个点的树
那有什么用呢,这棵树变成了二叉堆,在本题中还是小根堆,也就是两点LCA代表了重构树路径上最小边
那边再求个最小值不就可以用倍增解决了吗
代码
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define rr register
using namespace std;
const int N=400011;
struct rec{int x,y,w,c;}T[N]; struct node{int y,w,next;}e[N<<1]; struct Node{int y,next;}E[N];
int ls[N>>1],hs[N],dis[N],h[N],dep[N],n,m,k,K,cnt,nnt,f[N][20],Q,opt,S,fat[N]; pair<int,int>heap[N>>1];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+c-48,c=getchar();
return ans;
}
inline void add(int x,int y,int w){e[++k]=(node){y,w,ls[x]}; ls[x]=k;}
inline void Add(int x,int y){E[++K]=(Node){y,hs[x]},hs[x]=K;}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline void Push(pair<int,int>w){
heap[++cnt]=w;
rr int x=cnt;
while (x>1){
if (heap[x>>1]>heap[x])
swap(heap[x>>1],heap[x]),x>>=1;
else return;
}
}
inline void Pop(){
heap[1]=heap[cnt--];
rr int x=1;
while ((x<<1)<=cnt){
rr int y=x<<1;
if (y<cnt&&heap[y+1]<heap[y]) ++y;
if (heap[y]<heap[x]) swap(heap[y],heap[x]),x=y;
else return;
}
}
inline void Dijkstra(){
dis[1]=0,heap[++cnt]=make_pair(0,1);
while (cnt){
rr int x=heap[1].second,t=heap[1].first;
Pop(); if (t!=dis[x]) continue;
for (rr int i=ls[x];i;i=e[i].next)
if (dis[e[i].y]>dis[x]+e[i].w){
dis[e[i].y]=dis[x]+e[i].w;
Push(make_pair(dis[e[i].y],e[i].y));
}
}
}
bool cmp(rec x,rec y){return x.c>y.c;}
inline signed getf(int u){return fat[u]==u?u:fat[u]=getf(fat[u]);}
inline void Kruskal(){
for (rr int i=1;i<n*2;++i) fat[i]=i;
for (rr int i=1,tot=0;i<=m;++i){
rr int fa=getf(T[i].x),fb=getf(T[i].y);
if (fa!=fb){
fat[fa]=fat[fb]=++nnt,h[nnt]=T[i].c;
Add(nnt,fa),Add(nnt,fb);
if (++tot==n-1) return;
}
}
}
inline void dfs(int x,int fa){
dep[x]=dep[fa]+1,f[x][0]=fa;
for (rr int i=1;i<20;++i) f[x][i]=f[f[x][i-1]][i-1];
for (rr int i=hs[x];i;i=E[i].next)
dfs(E[i].y,x),dis[x]=min(dis[x],dis[E[i].y]);
}
inline signed GetF(int x,int H){
for (rr int i=19;~i;--i)
if (dep[x]>=(1<<i)&&h[f[x][i]]>H) x=f[x][i];
return dis[x];
}
signed main(){
for (rr int Test=iut();Test;--Test){
memset(ls,0,sizeof(ls)),memset(f,0,sizeof(f));
memset(dep,0,sizeof(dep)),memset(hs,0,sizeof(hs));
memset(h,0,sizeof(h)),memset(dis,0x3f,sizeof(dis));
n=iut(),m=iut(),k=K=1,nnt=n;
for (rr int i=1;i<=m;++i){
T[i]=(rec){iut(),iut(),iut(),iut()};
add(T[i].x,T[i].y,T[i].w);
add(T[i].y,T[i].x,T[i].w);
}
Dijkstra(),sort(T+1,T+1+m,cmp),Kruskal(),
dfs(nnt,0),Q=iut(),opt=iut(),S=iut();
for (rr int lastans=0;Q;Q--){
rr int G=iut(),H=iut();
if (opt) G=(G+lastans-1)%n+1,H=(H+lastans)%(S+1);
print(lastans=GetF(G,H)),putchar(10);
}
}
return 0;
}
#Kruskal重构树,Dijkstra,倍增#洛谷 4768 [NOI2018]归程的更多相关文章
- NOI Day1T1归程(Kruskal重构树+Dijkstra)
NOI Day1T1归程(Kruskal重构树+Dijkstra) 题目 洛谷题目传送门 题解 其实我不想写......,所以...... 挖个坑......我以后一定会补的 luogu的题解讲的还是 ...
- [洛谷P4768] [NOI2018]归程 (kruskal重构树模板讲解)
洛谷题目链接:[NOI2018]归程 因为题面复制过来有点炸格式,所以要看题目就点一下链接吧\(qwq\) 题意: 在一张无向图上,每一条边都有一个长度和海拔高度,小\(Y\)的家在\(1\)节点,并 ...
- 洛谷P4768 [NOI2018]归程(Kruskal重构树)
题意 直接看题目吧,不好描述 Sol 考虑暴力做法 首先预处理出从$1$到每个节点的最短路, 对于每次询问,暴力的从这个点BFS,从能走到的点里面取$min$ 考虑如何优化,这里要用到Kruskal重 ...
- UVA1265 Tour Belt Kruskal重构树、倍增、树上差分
题目传送门 题意:定义$Tour \, Belt$为某张图上的一个满足以下条件的点集:①点集中至少有$2$个点②任意两点互相连通③图上两个端点都在这个点集中的边的权值的最小值严格大于图上只有一个端点在 ...
- 【BZOJ 3551】[ONTAK2010] Peaks加强版 Kruskal重构树+树上倍增+主席树
这题真刺激...... I.关于Kruskal重构树,我只能开门了,不过补充一下那玩意还是一棵满二叉树.(看一下内容之前请先进门坐一坐) II.原来只是用树上倍增求Lca,但其实树上倍增是一种方法,L ...
- 洛谷P4768 [NOI2018]归程 [可持久化并查集,Dijkstra]
题目传送门 归程 格式难调,题面就不放了. 分析: 之前同步赛的时候反正就一脸懵逼,然后场场暴力大战,现在呢,还是不会$Kruskal$重构树,于是就拿可持久化并查集做. 但是之前做可持久化并查集的时 ...
- 洛谷 P4768 [NOI2018]归程
洛谷 361行代码的由来 数据分治大发好啊- NOI的签到题,可怜我在家打了一下午才搞了80分. 正解应该是kruskal重构树或排序+可持久化并查集. 我就分点来讲暴力80分做法吧(毕竟正解我也没太 ...
- 洛谷P4768 [NOI2018]归程(克鲁斯卡尔重构树+最短路)
传送门 前置技能,克鲁斯卡尔重构树 我们按道路的高度建一个最大生成树,然后建好克鲁斯卡尔重构树 那么我们需要知道一颗子树内到1点距离最近是多少(除此之外到子树内任何一个点都不需要代价) 可以一开始直接 ...
- 洛谷$P4768\ [NOI2018]$归程 $kruscal$重构树
正解:$kruscal$重构树 解题报告: 传送门$QwQ$ 语文不好选手没有人权$TT$连题目都看不懂真的要哭了$kk$ 所以先放个题目大意?就说给定一个$n$个点,$m$条边的图,每条边有长度和海 ...
- 洛谷P4768 [NOI2018]归程(可持久化并查集,最短路)
闲话 一个蒟蒻,在网络同步赛上进行了这样的表演-- T2组合计数不会,T3字符串数据结构不会,于是爆肝T1 一开始以为整个地图都有车,然后写了2h+的树套树,终于发现样例过不去 然后写可持久化并查集D ...
随机推荐
- Lua调试函数 debug.getinfo() namewhat详解
Lua调试的时候会用到debug.getinfo()函数,what的值文档给了解释: "Lua" : Lua function "C" : C function ...
- 使用矩池云 Docker 虚拟机安装VNC、Conda、Python及CUDA
矩池云虚拟机支持 Docker 使用,但是由于虚拟机目前不支持启动时传递环境变量来设置VNC.Jupyterlab 连接密码,所以我们没有创建相关基础镜像(设置固定密码容易泄漏),下面给大家介绍手动安 ...
- macOS搭建SonarQube
目录 前言 准备环境 下载安装包 解压路径:/usr/local 创建数据库 修改配置文件 配置环境变量 启动SonarQube 扫描项目 项目报告介绍 总结 前言 初到新公司,接手8-10个java ...
- 【Azure Redis】中国区Redis在东三区的资源无法在通过门户上与北三区资源之间建立灾备链接
问题描述 为应用启用灾备管理,在北三区建立了一个Azure Redis,同时,在东三区也建立了一个同样的Prem级Redis服务.但是在建立灾备(DR:Disease Recovery)时候,却无法选 ...
- 【Azure 应用服务】App Service for Linux环境中,如何解决字体文件缺失的情况
问题描述 部署在App Service for Linux环境中的Web App.出现了字体文件缺失的问题,页面显示本来时中文的地方,区别变为方框占位. 问题分析 在应用中,通常涉及到显示问题的有两个 ...
- Jmeter 之常数吞吐量作用
一 添加方法: 线程组右键->添加->定时器-> 常数吞吐量定时器 二 作用: 常数吞吐量定时器的作用: 设置最大的吞吐量不超过设置的值 注意:如果线程能发送的请求远远低于设置的 ...
- Java 常用类 String的常用方法(2)
1 /** 2 * String 常用方法(2) 3 * boolean endsWith(String suffix):测试此字符串是否以指定的后缀结束 4 * boolean startsWith ...
- Java 数组对象 小测试
1 package com.bytezero.bank; 2 /** 3 * 4 * @Description 5 * @author Bytezero·zhenglei! Email:4204982 ...
- 虚拟机和开发板之间通过NFS互联
简介 NFS是Network File System的首字母缩写.它是一种分布式协议,使客户端可以访问远程服务器上的共享文件.它允许网络中的计算机之间通过TCP/IP网络共享资源. 配置过程 安装NF ...
- 适用于AbpBoilerplate的阿里云腾讯云Sms短信服务
Sms 适用于AbpBoilerplate的短信服务(Short Message Service,SMS)模块,通过简单配置即可使用,仅更改一处代码即可切换短信服务提供商. Aliyun.Sms由阿里 ...