向量

向量是序列容器,表示可以更改大小的数组。

就像数组一样,向量对其元素使用连续的存储位置,这意味着也可以使用指向其元素的常规指针上的偏移量来访问其元素,并且与数组一样高效。但与数组不同的是,它们的大小可以动态变化,它们的存储由容器自动处理。

在内部,向量使用动态分配的数组来存储其元素。可能需要重新分配此数组,以便在插入新元素时增加大小,这意味着分配新数组并将所有元素移动到该数组。就处理时间而言,这是一项相对昂贵的任务,因此,每次将元素添加到容器时,向量都不会重新分配。

相反,向量容器可以分配一些额外的存储以适应可能的增长,因此容器的实际容量可能大于严格需要的存储来包含其元素(即其大小)。库可以实现不同的增长策略,以平衡内存使用和重新分配,但无论如何,重新分配应仅以对数增长的大小间隔发生,以便可以在向量末尾插入单个元素,并提供摊销的恒定时间复杂性。

因此,与数组相比,向量消耗更多的内存,以换取管理存储和以有效方式动态增长的能力。

与其他动态序列容器(deques、list 和 forward_lists)相比,向量非常有效地访问其元素(就像数组一样),并且相对有效地从其末尾添加或删除元素。对于涉及在末尾以外的位置插入或删除元素的操作,它们的性能比其他元素差,并且迭代器和引用的一致性低于 lists 和 forward_lists。

成员函数

	(构造函数)	构造 vector(公开成员函数)
(析构函数) 析构 vector(公开成员函数)
operator= 赋值给容器(公开成员函数)
assign 将值赋给容器(公开成员函数)
get_allocator 返回相关的分配器(公开成员函数) 元素访问
at 访问指定的元素,同时进行越界检查(公开成员函数)
operator[] 访问指定的元素(公开成员函数)
front 访问第一个元素(公开成员函数)
back 访问最后一个元素(公开成员函数)
data 直接访问底层数组(公开成员函数) 迭代器
begin,cbegin(C++11) 返回指向起始的迭代器(公开成员函数)
end,cend(C++11) 返回指向末尾的迭代器(公开成员函数)
rbegin,crbegin(C++11) 返回指向起始的逆向迭代器(公开成员函数)
rend,crend(C++11) 返回指向末尾的逆向迭代器(公开成员函数) 容量
empty 检查容器是否为空(公开成员函数)
size 返回容纳的元素数(公开成员函数)
max_size 返回可容纳的最大元素数(公开成员函数)
reserve 预留存储空间(公开成员函数)
capacity 返回当前存储空间能够容纳的元素数(公开成员函数)
shrink_to_fit(C++11) 通过释放未使用的内存减少内存的使用(公开成员函数) 修改器
clear 清除内容(公开成员函数)
insert 插入元素(公开成员函数)
emplace(C++11) 原位构造元素(公开成员函数)
erase 擦除元素(公开成员函数)
push_back 将元素添加到容器末尾(公开成员函数)
emplace_back(C++11) 在容器末尾就地构造元素(公开成员函数)
pop_back 移除末元素(公开成员函数)
resize 改变容器中可存储元素的个数(公开成员函数)
swap 交换内容(公开成员函数) 非成员函数
按照字典顺序比较 vector 中的值(函数模板)
operator==
operator!=(C++20 中移除)
operator<(C++20 中移除)
operator<=(C++20 中移除)
operator>(C++20 中移除)
operator>=(C++20 中移除)
operator<=>(C++20)
std::swap(std::vector) 特化 std::swap 算法(函数模板)
erase(std::vector),erase_if(std::vector) (C++20) 擦除所有满足特定判别标准的元素(函数模板

cpp

template <typename T>
class Vector
{
public:
Vector() noexcept = default;
explicit Vector(size_t n) : cap_{n}, ptr_{alloc(cap_)}
{
for (; len_ < n; ++len_)
{
construct(ptr_ + len_); //调用T的默认构造
}
}
Vector(size_t n, const T &x) : cap_{n}, ptr_{alloc(cap_)}
{
for (; len_ < n; ++len_)
{
construct(ptr_ + len_, x); //调用T的拷贝构造
}
}
Vector(const Vector &x) : cap_{x.size()}, ptr_{alloc(cap_)} //拷贝构造
{
for (; len_ < x.size(); ++len_)
{
construct(ptr_ + len_, x[len_]);
}
}
Vector(Vector &&x) noexcept //移动构造
{
cap_ = std::__exchange(x.cap_, 0);
len_ = std::__exchange(x.len_, 0);
ptr_ = std::__exchange(x.ptr_, nullptr);
}
Vector(std::initializer_list<T> li) : cap_{li.size()}, ptr_{alloc(cap_)} //初始化列表
{
for (auto &x : li)
{
construct(ptr_ + len_, x);
++len_;
}
} ~Vector() noexcept
{
clear();
dealloc(ptr_);
} void swap(Vector &x) noexcept
{
using std::swap; // ADL
swap(cap_, x.cap_);
swap(len_, x.len_);
swap(ptr_, x.ptr_);
}
void clear() noexcept
{
for (; len_ > 0; --len_)
{
destroy(ptr_ + len_ - 1);
}
} Vector &operator=(const T &x) //拷贝赋值
{
if (this != &x)
{
Vector{x}.swap(*this);
}
return *this;
}
Vector &operator=(T &&x) noexcept //移动赋值
{
if (this != &x)
{
Vector{std::move(x)}.swap(*this);
}
return *this;
}
Vector &operator=(std::initializer_list<T> li) //初始化列表赋值
{
Vector{li}.swap(*this);
return *this;
} void push_back(const T &x) //拷贝
{
emplace_back(x);
}
void push_back(T &&x) //移动
{
emplace_back(x);
}
template <typename... Args>
void emplace_back(Args &&...args) //直接传递构造函数
{
if (len_ == cap_)
{
size_t new_cap = cap_ ? cap_ * 2 : 1; //等0返回1
T *new_ptr = alloc(new_cap);
for (size_t new_len; new_len < len_; ++new_len)
{
construct(new_ptr + new_len, std::move_if_noexcept(ptr_[new_len]));
}
cap_ = new_cap;
ptr_ = new_ptr;
}
construct(ptr_ + len_, std::forward<Args>(args)...);
++len_;
}
void pop_back() noexcept
{
if (len_ < cap_ / 2)
{
size_t new_cap = cap_ / 2;
T *new_ptr = alloc(new_cap);
for (size_t new_len = 0; new_len < len_; ++new_len)
{
construct(new_ptr + new_len, std::move_if_noexcept(ptr_[new_len]));
}
cap_ = new_cap;
ptr_ = new_ptr;
}
destroy(ptr_ + len_ - 1);
--len_;
}
size_t size() const noexcept
{
return len_;
}
size_t capacity() const noexcept
{
return cap_;
}
bool empty() const noexcept
{
return len_ == 0;
} T &operator[](size_t i)
{
return ptr_[i];
}
const T &operator[](size_t i) const
{
return ptr_[i];
} T *begin() noexcept
{
return ptr_;
}
T *end() noexcept
{
return ptr_ + len_;
}
const T *begin() const noexcept
{
return ptr_;
}
const T *end() const noexcept
{
return ptr_ + len_;
} private:
T *alloc(size_t n) //分配n个大小内存
{
return static_cast<T *>(::operator new(sizeof(T) * n));
}
void dealloc(T *p) noexcept //释放内存
{
::operator delete(p);
}
template <typename... Args>
void construct(T *p, Args &&...args) //在这块内存上构造T类型对象
{
::new (p) T(std::forward<Args>(args)...);
}
void destroy(T *p) noexcept
{
p->~T();
} private:
size_t cap_{0}; //容量
size_t len_{0}; //元素个数
T *ptr_{nullptr};
};

C++简单实现vector的更多相关文章

  1. 转载 从最简单的vector中sort用法到自定义比较函数comp后对结构体排序的sort算法

    转载自:http://www.cnblogs.com/cj695/p/3863142.html sort函数在使用中非常好用,也非常简单,而且效率与冒泡或者选择排序不是一个数量级.本文就sort函数在 ...

  2. 【转】 从最简单的vector中sort用法到自定义比较函数comp后对结构体排序的sort算法

    sort函数在使用中非常好用,也非常简单,而且效率与冒泡或者选择排序不是一个数量级.本文就sort函数在vector中的用法分为sort函数入门用法与自定义comp比较函数比较结构体这两个最基本的功能 ...

  3. 从最简单的vector中sort用法到自定义比较函数comp后对结构体排序的sort算法

    sort函数在使用中非常好用,也非常简单,而且效率与冒泡或者选择排序不是一个数量级.本文就sort函数在vector中的用法分为sort函数入门用法与自定义comp比较函数比较结构体这两个最基本的功能 ...

  4. 【C++】从最简单的vector中sort用法到自定义比较函数comp后对结构体排序的sort算法

    sort函数在使用中非常好用,也非常简单,而且效率与冒泡或者选择排序不是一个数量级.本文就sort函数在vector中的用法分为sort函数入门用法与自定义comp比较函数比较结构体这两个最基本的功能 ...

  5. C++ STL的简单应用(vector容器专题)

    #include <iostream> #include <string> #include <stdlib.h> #include <vector> ...

  6. 自己动手实现简单的Vector

    看到今天,终于自己动手写了一个自己的vector,我这个版本的vector只有vector主要的一些操作,包括原版vector的所有构造函数,begin(),end(),size(),capacity ...

  7. C++中STL中简单的Vector的实现

    该vector只能容纳标准库中string类, 直接上代码了,StrVec.h文件内容为: #ifndef STRVEC_H #define STRVEC_H #include<iostream ...

  8. vc++简单的vector动态数组实现

    #ifndef __MYVECTOR__ #define __MYVECTOR__ #include <Windows.h> #define SUCCESS 1 // 成功 #define ...

  9. 简单的 vector

    #pragma once #include <memory.h> #include <stdlib.h> #include <iostream> using std ...

  10. C++线性序列容器<vector>简单总结

    C++线性序列容器<vector>简单总结 vector是一个长度可变的数组,使用的时候无须声明上限,随着元素的增加,Vector的长度会自动增加:Vector类提供额外的方法来增加.删除 ...

随机推荐

  1. java去除字符串空格

    package test; /** * 去除字符串空格 * * @author xusucheng * @create 2018-07-04 **/ public class RemoveWhites ...

  2. win32 - 监控DNS是否发生改变

    两种方法: 第一种是使用WMI进行后台轮询 第二种是查询注册表对应的DNS键值 Here: HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameter ...

  3. [BUUCTF][Web][GXYCTF2019]Ping Ping Ping 1

    打开靶机对应URL 提示有ip参数 尝试构造url http://714ad4a2-64e2-452b-8ab9-a38df80dc584.node4.buuoj.cn:81/?ip=127.0.0. ...

  4. 记录级别索引:Hudi 针对大型数据集的超快索引

    介绍 索引是一个关键组件,有助于 Hudi 写入端快速更新和删除,并且它在提高查询执行方面也发挥着关键作用. Hudi提供了多种索引类型,包括全局变化的Bloom索引和Simple索引.利用HBase ...

  5. Html飞机大战(十四): 分数编辑和生命值设定

    好家伙,这章让我感受到了面向对象的优势了   1.分数设置 每个种类的敌机分数都设置好了, 那么当我们击毁不同的敌机后,加上不同的分数就行了 但是我们还是要想一下,   我要在哪里放这个分数增加的方法 ...

  6. SQL SERVER——高可用技术概述

    自从SQL Server 2005以来,微软已经提供了多种高可用性技术来减少宕机时间和增加对业务数据的保护,而随着SQL Server 2008,SQL Server 2008 R2,SQL Serv ...

  7. Jmeter 之 forEach控制器

    1 添加方法: 线程组右键-> 添加 -> 逻辑控制器 ->ForEach控制器   2 作用: 可以更方便JMeter后置处理器提取出来的多组数据,也可以定义具有特定规则的数据,用 ...

  8. ConfigMap挂载与Subpath在Nginx容器中的应用

    本文分享自华为云社区<nginx.conf以configmap文件形式挂载到nginx容器中以及subpath使用场景>,作者:可以交个朋友. 背景 nginx.conf通过configm ...

  9. Zabbix Agent item监控项讲解

    前言 agent与snmp是Zabbix两种重要的监控方式,这一期主要介绍Zabbix Agent item监控项..Zabbix agent分为主动代理.被动代理,配置item类型时,可以选择需要的 ...

  10. stm32 fatfs 文件系统分析和代码解析

    一 文件系统: 文件系统是操作系统用于明确存储设备(常见的是磁盘,也有基于NAND Flash的固态硬盘)或分区上的文件的方法和数据结构:即在存储设备上组织文件的方法.操作系统中负责管理和存储文件信息 ...