题目

给一个长度为\(n\)的数组\(a\)。试将其划分为两个严格上升子序列,并使其长度差最小。


分析

当\(max([1,i])<min([i+1,n])\)时显然两个区间互不影响,把\(i\)视为分界点

若相邻的两个分界点\(i,j\)所组成的区间\([i\sim j]\)如果合法只有一种划分方法

所以把合法区间贡献扔入背包里搞一搞就可以了


代码

#include <cstdio>
#include <cctype>
#include <bitset>
#define rr register
using namespace std;
const int N=100011; bitset<N>dp;
int n,mx[N],mn[N],a[N],flag,ans,las;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline bool check(int l,int r){
rr int fi=0,se=0,TOT=0;
for (rr int i=l;i<=r;++i)
if (fi<a[i]) fi=a[i],++TOT;
else if (se<a[i]) se=a[i];
else return 0;
dp=(dp<<TOT)|(dp<<(r-l+1-TOT));
return 1;
}
signed main(){
for (rr int Test=iut();Test;--Test){
n=iut(),mx[0]=-1,mn[n+1]=0x3f3f3f3f,
flag=0,dp.reset(),dp[0]=las=1,ans=-1;
if (n==1) printf("-1\n");
for (rr int i=1;i<=n;++i) a[i]=iut();
for (rr int i=1;i<=n;++i) mx[i]=mx[i-1]>a[i]?mx[i-1]:a[i];
for (rr int i=n;i>=1;--i) mn[i]=mn[i+1]<a[i]?mn[i+1]:a[i];
for (rr int i=1;i<=n;++i)
if (mx[i]<mn[i+1]){
if (!check(las,i)){
flag=1;
break;
}
las=i+1;
}
if (!flag){
for (rr int i=n/2;~i;--i)
if (dp[i]){
ans=n-i*2;
break;
}
}
printf("%d\n",ans);
}
return 0;
}

#背包#nssl 1488 上升子序列的更多相关文章

  1. dp常见模型

    1.背包问题.0/1背包.完全背包.多重背包.分组背包.依赖背包. 2.子序列.最长非上升/下降子序列.最长先上升再下降子序列.最长公共子序列.最大连续子区间和. 3.最大子矩阵. 4.区间dp. 5 ...

  2. 北航2018级算法期末上机实录随笔1st

    简单记录下题目类型和做题情况,理性复习同时也希望提供一些参考 题目描述 共计八个题目,按照助教的划分,题目分类如下 一个签到(二分查找),两个板子(活动选择.KMP(洛谷kmp模板题)),一个板子变形 ...

  3. Codeforces Round #658 (Div. 2) D. Unmerge(dp)

    题目链接:https://codeforces.com/contest/1382/problem/D 题意 给出一个大小为 $2n$ 的排列,判断能否找到两个长为 $n$ 的子序列,使得二者归并排序后 ...

  4. [C++] 动态规划之矩阵连乘、最长公共子序列、最大子段和、最长单调递增子序列、0-1背包

    一.动态规划的基本思想 动态规划算法通常用于求解具有某种最优性质的问题.在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解. 将待求解问题分解成若干个子问题,先求解子 ...

  5. DP的初级问题——01包、最长公共子序列、完全背包、01包value、多重部分和、最长上升子序列、划分数问题、多重集组合数

    当初学者最开始学习 dp 的时候往往接触的是一大堆的 背包 dp 问题, 那么我们在这里就不妨讨论一下常见的几种背包的 dp 问题: 初级的时候背包 dp 就完全相当于BFS DFS 进行搜索之后的记 ...

  6. POJ 2923 Relocation (状态压缩,01背包)

    题意:有n个(n<=10)物品,两辆车,装载量为c1和c2,每次两辆车可以运一些物品,一起走.但每辆车物品的总重量不能超过该车的容量.问最少要几次运完. 思路:由于n较小,可以用状态压缩来求解. ...

  7. Codeforces Round #360 (Div. 2) E. The Values You Can Make 01背包

    题目链接: 题目 E. The Values You Can Make time limit per test:2 seconds memory limit per test:256 megabyte ...

  8. D - Digging(01背包,贪心)

    D - Digging Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Submit St ...

  9. 水dp第二天(背包有关)

    水dp第二天(背包有关) 标签: dp poj_3624 题意:裸的01背包 注意:这种题要注意两个问题,一个是要看清楚数组要开的范围大小,然后考虑需要空间优化吗,还有事用int还是long long ...

  10. Codechef MGCHGYM Misha and Gym 容斥、背包、Splay

    VJ传送门 简化题意:给定一个长度为\(N\)的数列,\(Q\)个操作: \(1\,x\,a\).将数列中第\(x\)个元素改为\(a\) \(2\,l\,r\).反转子序列\([l,r]\) \(3 ...

随机推荐

  1. 腾讯云视频转码回调 http code 405

    异常信息 405 Method Not Allowed 异常场景 通过腾讯云SDK上传视频,视频转码完成回调我的接口失败,我这边一直没有log.找到腾讯云工作人员,告诉我这边返回405错误和不支持ge ...

  2. 【Azure App Service】误删除App Service资源,怎么办?

    问题描述 操作不当,误删除了App Service的资源,怎么办? 问题解答 根据Azure 官方文档,可以使用 Powershell 命令恢复到原始 App Service 应用名称. 操作步骤 第 ...

  3. 【Azure App Service for Windows】 PHP应用出现500 : The page cannot be displayed because an internal server error has occurred. 错误

    问题描述 PHP应用突然遇见了500 The page cannot be displayed because an internal server error has occurred.错误,但是如 ...

  4. mysql-批量修改表的主键id,修改成联合主键

    1.sql脚本 一. 通过sql脚本,查出所有表的功能,并编写插入修改的联合主键,sql select concat('ALTER table ', TABLE_NAME, ' DROP PRIMAR ...

  5. VC-MFC 在磁盘中读取文件

    1 // ReadDlg.cpp : 实现文件 2 // 3 4 #include "stdafx.h" 5 #include "Read.h" 6 #incl ...

  6. Java 基本数据类型之间的运算规则

    1 /*** 2 * 基本数据类型之间的运算规则 3 * 4 * 前提:7中基本数据类型运算 5 * 6 * 1.自动类型提升: 7 * 当容量小的类型与容量大的数据类型的变量做运算时,结果自动提升为 ...

  7. vue css 背景图 路径 记得加波浪号 background-image: url("~@/assets/images/d.jpg");

    vue css 背景图 路径 记得加波浪号 background-image: url("~@/assets/images/d.jpg"); 为什么 不加波浪号,图片显示不出来哟

  8. C#泛型的类型参数约束

    常用约束 约束告知编译器类型参数必须具备的功能. 在没有任何约束的情况下,类型参数可以是任何类型. 编译器只能假定 System.Object 的成员,它是任何 .NET 类型的最终基类. 如果客户端 ...

  9. 【算法】C和Python实现快速排序-三数中值划分选择主元(非随机)

    一.快排基础 1.1 快排的流程 将数组A进行快速排序的基本步骤-quick_sort(A): 递归基础情况:如果A中的元素个数是1或0,则返回. 选取主元:取A中的任意一个元素v,作为主元(pivo ...

  10. Typora自定义主题详解--打造自己的专属样式

    你真的会使用Typora吗? 欢迎关注博主公众号「Java大师」, 专注于分享Java领域干货文章, 关注回复「主题」, 获取大师使用的typora主题: http://www.javaman.cn/ ...