本文分享自华为云社区《Ascend C 自定义算子 Kernel Launch调用入门》,作者: jackwangcumt。

1 Kernel Launch概述

根据官方说明文档的介绍,Ascend C对外开放核函数的基础调用(Kernel Launch)方式,是为了简化Ascend C 自定义算子的开发流程,提供更易用的调试调优功能。当开发者完成算子核函数的开发和Tiling实现后,即可通过AscendCL运行时接口,完成算子的调用并实现自己的推理应用;同时提供简易的kernel开发工程,开发者仅需提供kernel侧实现,基于工程框架可以快速实现Kernel Launch。本文实验前提是完成了《Ascend C 自定义PRelu算子》博文的相关算子开发工程。网址为:https://bbs.huaweicloud.com/blogs/425244 。请注意:

  • 8.0.RC1.alpha002 当前版本,Kernel Launch开放式编程为试用特性,不支持应用于商用产品中。
  • 8.0.RC1.alpha002当前版本暂不支持获取用户workspace特性。

2 Kernel Launch调用方式

ACLRT_LAUNCH_KERNEL调用方式对内核调用符方式进行了功能加强,核函数的调用是异步的,调用接口的使用方法如下:

ACLRT_LAUNCH_KERNEL(kernel_name)(blockDim, stream, argument list);
  • kernel_name:算子核函数的名称。
  • blockDim:规定了核函数将会在几个核上执行。每个执行该核函数的核会被分配一个逻辑ID,即block_idx,可以在核函数的实现中调用GetBlockIdx来获取block_idx。
  • stream,类型为aclrtStream,stream用于维护一些异步操作的执行顺序,确保按照应用程序中的代码调用顺序在Device上执行。
  • argument list:参数列表,与核函数的参数列表保持一致。

为帮助开发者快速的完成算子的Kernel Launch调试,官方提供了简易的算子工程,我们可以基于该算子工程中的样例代码和工程框架进行算子开发。算子工程支持的如下:

  • 该工程支持调试功能,如PRINTF功能、DumpTensor
  • 工程编译生成的应用程序,可通过msprof命令行方式采集和解析性能数据。

可以参考工程样例:https://gitee.com/ascend/samples/blob/master/operator/AddCustomSample/KernelLaunch/AddKernelInvocationTilingNeo ,其目录结构如下所示:

AddKernelInvocationNeo
|-- cmake // CMake编译文件
|-- scripts
| ├── gen_data.py // 输入数据和真值数据生成脚本文件
| ├── verify_result.py // 验证输出数据和真值数据是否一致的验证脚本
|-- CMakeLists.txt // CMake编译配置文件
|-- add_custom.cpp // 矢量算子kernel实现
|-- data_utils.h // 数据读入写出函数
|-- main.cpp // 主函数,调用算子的应用程序,含CPU域及NPU域调用
|-- run.sh // 编译运行算子的脚本

基于该算子工程,开发者进行算子开发的步骤如下:

  • 完成算子kernel侧实现。
  • 编写算子调用应用程序main.cpp。
  • 编写CMake编译配置文件CMakeLists.txt。

  • 根据实际需要修改输入数据和真值数据生成脚本文件gen_data.py和验证输出数据和真值数据是否一致的验证脚本verify_result.py。
  • 根据实际需要修改编译运行算子的脚本run.sh并执行该脚本,完成算子的编译运行和结果验证。

3 Kernel Launch实现

在PReluSample目录下新建一个目录KernelLaunch,用于存放Kernel Launch调用方式的工程代码,我这里参考官方的https://gitee.com/ascend/samples/tree/master/operator/LeakyReluCustomSample/KernelLaunch/

LeakyReluKernelInvocation样例工程,并修改了相关参数,p_relu_custom.cpp 代码如下所示:

#include "kernel_operator.h"
using namespace AscendC; constexpr int32_t BUFFER_NUM = 2;
constexpr int32_t TOTAL_LENGTH = 8 * 200 * 1024;
constexpr int32_t TILE_NUM = 32;
constexpr float alpha = 0.002; class KernelPRelu {
public:
__aicore__ inline KernelPRelu() {}
__aicore__ inline void Init(GM_ADDR x, GM_ADDR y, uint32_t totalLength, uint32_t tileNum, float alpha)
{
PRINTF("[npu debug] >>> GetBlockNum() %d", GetBlockNum());
ASSERT(GetBlockNum() != 0 && "block dim can not be zero!");
this->blockLength = totalLength / GetBlockNum();
this->tileNum = tileNum;
this->alpha = static_cast<float>(alpha);
ASSERT(tileNum != 0 && "tile num can not be zero!");
this->tileLength = this->blockLength / tileNum / BUFFER_NUM; // get start index for current core, core parallel
xGm.SetGlobalBuffer((__gm__ float*)x + this->blockLength * GetBlockIdx(), this->blockLength);
yGm.SetGlobalBuffer((__gm__ float*)y + this->blockLength * GetBlockIdx(), this->blockLength);
// pipe alloc memory to queue, the unit is Bytes
pipe.InitBuffer(inQueueX, BUFFER_NUM, this->tileLength * sizeof(float));
pipe.InitBuffer(outQueueY, BUFFER_NUM, this->tileLength * sizeof(float));
pipe.InitBuffer(tmpBuffer1, this->tileLength * sizeof(float));
//pipe.InitBuffer(tmpBuffer2, this->tileLength * sizeof(float));
}
__aicore__ inline void Process()
{
// loop count need to be doubled, due to double buffer
int32_t loopCount = this->tileNum * BUFFER_NUM;
// tiling strategy, pipeline parallel
for (int32_t i = 0; i < loopCount; i++) {
CopyIn(i);
Compute(i);
CopyOut(i);
}
} private:
__aicore__ inline void CopyIn(int32_t progress)
{
// alloc tensor from queue memory
LocalTensor<float> xLocal = inQueueX.AllocTensor<float>();
// copy progress_th tile from global tensor to local tensor
DataCopy(xLocal, xGm[progress * this->tileLength], this->tileLength);
// enque input tensors to VECIN queue
inQueueX.EnQue(xLocal);
}
__aicore__ inline void Compute(int32_t progress)
{
// deque input tensors from VECIN queue
LocalTensor<float> xLocal = inQueueX.DeQue<float>();
LocalTensor<float> yLocal = outQueueY.AllocTensor<float>();
LocalTensor<float> tmpTensor1 = tmpBuffer1.Get<float>();
float inputVal = 0.0;
Maxs(tmpTensor1, xLocal, inputVal, this->tileLength); // x >= 0 --> x
// x < 0
Mins(xLocal, xLocal, inputVal, this->tileLength);
Muls(xLocal, xLocal, this->alpha, this->tileLength);
Add(yLocal, xLocal, tmpTensor1, this->tileLength);
outQueueY.EnQue<float>(yLocal);
// free input tensors for reuse
inQueueX.FreeTensor(xLocal);
}
__aicore__ inline void CopyOut(int32_t progress)
{
// deque output tensor from VECOUT queue
LocalTensor<float> yLocal = outQueueY.DeQue<float>();
// copy progress_th tile from local tensor to global tensor
DataCopy(yGm[progress * this->tileLength], yLocal, this->tileLength);
// free output tensor for reuse
outQueueY.FreeTensor(yLocal);
} private:
TPipe pipe;
TBuf<QuePosition::VECCALC> tmpBuffer1;
//TBuf<QuePosition::VECCALC> tmpBuffer1, tmpBuffer2;
// create queues for input, in this case depth is equal to buffer num
TQue<QuePosition::VECIN, BUFFER_NUM> inQueueX;
// create queue for output, in this case depth is equal to buffer num
TQue<QuePosition::VECOUT, BUFFER_NUM> outQueueY;
GlobalTensor<float> xGm, yGm;
uint32_t blockLength;
uint32_t tileNum;
uint32_t tileLength;
float alpha;
};
extern "C" __global__ __aicore__ void p_relu_custom(GM_ADDR x, GM_ADDR y) {
//GET_TILING_DATA(tiling_data, tiling);
// TODO: user kernel impl
KernelPRelu op;
op.Init(x, y, TOTAL_LENGTH, TILE_NUM, alpha);
op.Process();
} #ifndef __CCE_KT_TEST__
// call of kernel function
void p_relu_custom_do(uint32_t blockDim, void* l2ctrl, void* stream, uint8_t* x, uint8_t* y)
{
p_relu_custom<<<blockDim, l2ctrl, stream>>>(x, y);
}
#endif

main.cpp 代码如下所示 :

/*
* Copyright (c) Huawei Technologies Co., Ltd. 2022-2023. All rights reserved.
* This file constains code of cpu debug and npu code.We read data from bin file
* and write result to file.
*/
#include "data_utils.h"
#ifndef __CCE_KT_TEST__
#include "acl/acl.h"
extern void p_relu_custom_do(uint32_t coreDim, void* l2ctrl, void* stream, uint8_t* x, uint8_t* y);
#else
#include "tikicpulib.h"
extern "C" __global__ __aicore__ void p_relu_custom(GM_ADDR x, GM_ADDR y);
#endif int32_t main(int32_t argc, char* argv[])
{
uint32_t blockDim = 8;
size_t inputByteSize = 8 * 200 * 1024 * sizeof(float);
size_t outputByteSize = 8 * 200 * 1024 * sizeof(float); #ifdef __CCE_KT_TEST__
// CPU
uint8_t* x = (uint8_t*)AscendC::GmAlloc(inputByteSize);
uint8_t* y = (uint8_t*)AscendC::GmAlloc(outputByteSize);
printf("[cpu debug]>>> inputByteSize: %d\n", inputByteSize); ReadFile("./input/input_x.bin", inputByteSize, x, inputByteSize);
AscendC::SetKernelMode(KernelMode::AIV_MODE);
ICPU_RUN_KF(p_relu_custom, blockDim, x, y); // use this macro for cpu debug
WriteFile("./output/output_y.bin", y, outputByteSize);
AscendC::GmFree((void *)x);
AscendC::GmFree((void *)y); #else
// NPU
//CHECK_ACL(aclInit(nullptr));
CHECK_ACL(aclInit("./acl.json"));
aclrtContext context;
int32_t deviceId = 0;
CHECK_ACL(aclrtSetDevice(deviceId));
CHECK_ACL(aclrtCreateContext(&context, deviceId));
aclrtStream stream = nullptr;
CHECK_ACL(aclrtCreateStream(&stream)); uint8_t *xHost, *yHost;
uint8_t *xDevice, *yDevice;
CHECK_ACL(aclrtMallocHost((void**)(&xHost), inputByteSize));
CHECK_ACL(aclrtMallocHost((void**)(&yHost), outputByteSize));
CHECK_ACL(aclrtMalloc((void**)&xDevice, inputByteSize, ACL_MEM_MALLOC_HUGE_FIRST));
CHECK_ACL(aclrtMalloc((void**)&yDevice, outputByteSize, ACL_MEM_MALLOC_HUGE_FIRST)); ReadFile("./input/input_x.bin", inputByteSize, xHost, inputByteSize);
CHECK_ACL(aclrtMemcpy(xDevice, inputByteSize, xHost, inputByteSize, ACL_MEMCPY_HOST_TO_DEVICE)); p_relu_custom_do(blockDim, nullptr, stream, xDevice, yDevice);
CHECK_ACL(aclrtSynchronizeStream(stream)); CHECK_ACL(aclrtMemcpy(yHost, outputByteSize, yDevice, outputByteSize, ACL_MEMCPY_DEVICE_TO_HOST));
WriteFile("./output/output_y.bin", yHost, outputByteSize); CHECK_ACL(aclrtFree(xDevice));
CHECK_ACL(aclrtFree(yDevice));
CHECK_ACL(aclrtFreeHost(xHost));
CHECK_ACL(aclrtFreeHost(yHost)); CHECK_ACL(aclrtDestroyStream(stream));
CHECK_ACL(aclrtDestroyContext(context));
CHECK_ACL(aclrtResetDevice(deviceId));
CHECK_ACL(aclFinalize());
#endif
return 0;
}

执行如下代码进行NPU上板调试和CPU调试:

#npu
bash run.sh Ascend310P1 npu_onboard
# cpu
bash run.sh Ascend310P1 cpu

点击关注,第一时间了解华为云新鲜技术~

Ascend C 自定义算子 Kernel Launch调用入门的更多相关文章

  1. Sqlserver如何递归查询层级数据将父级字段和本级某个字段合并?如何自定义用户函数并调用?

    开门见山,首先说下遇到的问题:前期系统地区字典表中,每个省市县只存了本级名称,没存完整的字段.如:肥西县隶属安徽省合肥市,表中就存了一个肥西县.现有需求需要将完整字段显示,由于系统已在线上运营,无法做 ...

  2. Dynamics 365 CE的插件/自定义工作流活动中调用Web API示例代码

    微软动态CRM专家罗勇 ,回复325或者20190428可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me! 现在Web API越来越流行,有时候为了程序更加健壮,需要在插件 ...

  3. 腾讯地图 API 调用入门

    本文仅为腾讯地图 API 调用入门,如需进阶学习,请在腾讯位置服务网站上进行学习. 登陆网址 https://lbs.qq.com/ 点击右上角的登陆按钮,需要进行注册按照流程进行就好. 完成之后,选 ...

  4. advancedsearch.php织梦高级自定义模型字段无法调用解决方案

    advancedsearch.php织梦dedecms 高级自定义模型字段无法调用解决方案 ,具体步骤如下: 1  打开修改puls/advancedsearch.php文件,找到复制代码(不同版本可 ...

  5. 利用jQuery扩展接口为jQuery框架定义了两个自定义函数,然后调用这两个函数

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  6. Part 7:自定义admin站点--Django从入门到精通系列教程

    该系列教程系个人原创,并完整发布在个人官网刘江的博客和教程 所有转载本文者,需在顶部显著位置注明原作者及www.liujiangblog.com官网地址. Python及Django学习QQ群:453 ...

  7. JSP自定义标签之简单标签入门

    在sun官方文档上有下面这样一段话. 官方文档声明 public interface SimpleTag extends JspTag Interface for defining Simple Ta ...

  8. PowerShell自定义函数定义及调用

    PowerShell是一种命令集,也有自己的语法定义及函数.本文主要介绍如何自定义powershell函数及如何调用,当初在写PowerShell自定义函数的时候查阅了很多资料都没找到如何调用自定义函 ...

  9. Jmeter自定义编写Java代码调用socket通信

    一.前言 最近需要测试一款手机游戏的性能,找不到啥录制脚本的工具,然后,另外想办法.性能测试实际上就是对服务器的承载能力的测试,和各种类型的手机客户端没有啥多大关系,手机再好,服务器负载不了,也不能够 ...

  10. Django——自定义分页(可调用)

    1.view from django.shortcuts import render,HttpResponse # Create your views here. from app01.models ...

随机推荐

  1. 【LeetCode贪心#05】K 次取反后最大化的数组和(自定义sort、二重贪心)

    K次取反后最大化的数组和 力扣题目链接(opens new window) 给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这 ...

  2. 【LeetCode哈希表#3】快乐数(set)

    快乐数 力扣题目链接(opens new window) 编写一个算法来判断一个数 n 是不是快乐数. 「快乐数」定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程 ...

  3. 在 C++ 项目中,通过源码使用 PaddlePaddle 实现 OCR 功能

    My-PaddleOCR 介绍 如何在 C++ 项目中,通过源码使用 PaddlePaddle 实现 OCR 功能. 本项目的所有源码:gitee: paddleocr 目前,官方提供使用 Paddl ...

  4. JAVA对象生命周期(三)-对象的销毁

    目录 从引用说起 指针直接引用 句柄引用 优缺点 如何判断对象死亡 引用计数法 可达性分析法 垃圾收集算法 标记-清除算法 复制算法 复制算法--优化 有关年轻代的JVM参数 标记-整理算法 分代收集 ...

  5. Java 常用类 String的常用方法(1)

    1 package com.bytezero.stringclass; 2 3 import org.junit.Test; 4 5 import java.sql.SQLOutput; 6 impo ...

  6. 深入解析ASP.NET Core MVC的模块化设计[下篇]

    ASP.NET Core MVC的"模块化"设计使我们可以构成应用的基本单元Controller定义在任意的模块(程序集)中,并在运行时动态加载和卸载.<设计篇>介绍了 ...

  7. SSH原理与实践(三)安装和使用

    主页 个人微信公众号:密码应用技术实战 个人博客园首页:https://www.cnblogs.com/informatics/ 引言 在之前SSH原理与实践系列文章中,我们主要讲解了SSH协议的原理 ...

  8. redis三主三从详细搭建过程

    搭建Redis三主三从集群的详细步骤如下: 准备环境: 确保你有六台服务器或虚拟机,每台服务器上都已经安装了Redis.这些服务器将用于搭建三主三从的Redis集群. 确保所有服务器之间的网络连接正常 ...

  9. 基于泰凌微TLSR8355的无线灯光智能控制系统解决方案调试总结

    前记  随着新技术的不断发展,在灯控市场.使用无线和传感器技术让灯的利用变得更加环保和智能是一个相对时尚的选择.最近跟几个客户做了一些此类的产品.发掘了一些有趣的功能和应用.这里做一个梳理. 特色梳理 ...

  10. pandas DataFrame内存优化技巧:让数据处理更高效

    Pandas无疑是我们数据分析时一个不可或缺的工具,它以其强大的数据处理能力.灵活的数据结构以及易于上手的API赢得了广大数据分析师和机器学习工程师的喜爱. 然而,随着数据量的不断增长,如何高效.合理 ...