前文链接:

基于GPT搭建私有知识库聊天机器人(一)实现原理

基于GPT搭建私有知识库聊天机器人(二)环境安装

基于GPT搭建私有知识库聊天机器人(三)向量数据训练


在前面的文章中,我们介绍了如何使用GPT模型搭建私有知识库聊天机器人的基本原理、环境安装、数据向量化。本文将进一步介绍如何使用langchain框架实现问答功能。

1、使用langchain框架

langchain是一个强大的框架,可以帮助我们构建基于GPT的问答系统。首先,我们需要导入所需的库和模块:

from langchain import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Milvus

2、向量处理和检索

在实现问答功能之前,我们需要将问题进行向量处理,并从向量数据库中检索最相似的数据。首先,我们与Milvus向量数据库建立连接,并设置检索前N条最相似数据:

embeddings = OpenAIEmbeddings()
vector_store = Milvus(
embedding_function=embeddings,
connection_args={"host": MILVUS_HOST, "port": MILVUS_PORT}
)
retriever = vector_store.as_retriever(search_kwargs={"k": target_source_chunks})

3、定义prompt模板

接下来,我们定义一个prompt模板,用于生成回答。这个模板包含了已知的信息和用户的问题:

prompt_template = """基于以下已知信息,简洁和专业的来回答用户的问题。
如果无法从中得到答案,请说 "根据已知信息无法回答该问题",不允许在答案中添加编造成分,答案请使用中文。
已知内容:
{context}
问题:
{question}""" promptA = PromptTemplate(template=prompt_template, input_variables=["context", "question"])

4、调用OpenAI接口进行问答

现在,我们可以调用OpenAI接口进行问答了。我们使用RetrievalQA类,并将之前定义的retriever和promptA传入,获取答案:

qa = RetrievalQA.from_chain_type(llm=openaiLlm, retriever=retriever, chain_type="stuff",
chain_type_kwargs={"prompt": promptA}, return_source_documents=True)
res = qa(question)
answer, docs = res['result'], res['source_documents']
print("question:[%s], answer:[%s]" % (question, answer))

5、全部代码

from langchain import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Milvus @llm_blue.route("/ans/<question>")
def ans(question: str) -> str:
embeddings = OpenAIEmbeddings()
vector_store = Milvus(
embedding_function=embeddings,
connection_args={"host": MILVUS_HOST, "port": MILVUS_PORT}
)
retriever = vector_store.as_retriever(search_kwargs={"k": target_source_chunks}) prompt_template = """基于以下已知信息,简洁和专业的来回答用户的问题。
如果无法从中得到答案,请说 "根据已知信息无法回答该问题",不允许在答案中添加编造成分,答案请使用中文。
已知内容:
{context}
问题:
{question}""" promptA = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain_type_kwargs = {"prompt": promptA}
qa = RetrievalQA.from_chain_type(llm=openaiLlm, retriever=retriever, chain_type="stuff",
chain_type_kwargs=chain_type_kwargs, return_source_documents=True) res = qa(question)
answer, docs = res['result'], res['source_documents']
print("question:[%s], answer:[%s]" % (question, answer))
return answer

6、总结

本文介绍了如何使用langchain框架实现基于GPT的私有知识库聊天机器人的问答功能。通过将问题进行向量处理并从向量数据库中检索相似数据,再结合OpenAI接口进行拟人化回答,我们可以构建一个具备垂直领域知识的问答系统。

基于GPT搭建私有知识库聊天机器人(四)问答实现的更多相关文章

  1. 计算机网络课设之基于UDP协议的简易聊天机器人

    前言:2017年6月份计算机网络的课设任务,在同学的帮助和自学下基本搞懂了,基于UDP协议的基本聊天的实现方法.实现起来很简单,原理也很简单,主要是由于老师必须要求使用C语言来写,所以特别麻烦,而且C ...

  2. ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档]

    ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档] 简介 简单地说就是该有的都有了,但是总体跑起来效果还不好. 还在开发中,它工作的效果还不好.但是你可以直 ...

  3. 版本控制系统之基于httpd搭建私有git仓库

    在上一篇博客中,我们主要聊到了git的基本工作原理和一些常用的git命令的使用:回顾请参考https://www.cnblogs.com/qiuhom-1874/p/13787701.html:今天我 ...

  4. 花了半个小时基于 ChatGPT 搭建了一个微信机器人

    相信大家最近被 ChatGPT 刷屏了,其实在差不多一个月前就火过一次,不会那会好像只在程序员的圈子里面火起来了,并没有被大众认知到,不知道最近是因为什么又火起来了,而且这次搞的人尽皆知. 想着这么火 ...

  5. 基于docer搭建私有gitlab服务器

    今天闲着无聊,于是乎想用最近很流行的docker容器搭建一个自己的gitlab的服务器,关于docker和gitlab就不多介绍了,网上查了很多资料,貌似没有一个统一的方法,很乱很杂,而且很容易误导人 ...

  6. 微信智能机器人助手,基于hook技术,自动聊天机器人

    下载地址: 链接:https://pan.baidu.com/s/1N5uQ3gaG2IZu7f6EGUmBxA 提取码:md7z 复制这段内容后打开百度网盘手机App,操作更方便哦 微信智能助手说明 ...

  7. 基于CentOS搭建私有云服务

    系统版本:CentOS 7.2 64 位操作系统 部署 XAMPP 服务 下载 XAMPP(XAMPP 是个集成了多个组件的开发环境,包括 Apache + MariaDB + PHP + Perl. ...

  8. 基于Docker搭建大数据集群(四)Spark部署

    主要内容 spark部署 前提 zookeeper正常使用 JAVA_HOME环境变量 HADOOP_HOME环境变量 安装包 微云下载 | tar包目录下 Spark2.4.4 一.环境准备 上传到 ...

  9. 智能聊天机器人——基于RASA搭建

    前言: 最近了解了一下Rasa,阅读了一下官方文档,初步搭建了一个聊天机器人. 官方文档:https://rasa.com/docs/ 搭建的chatbot项目地址: https://github.c ...

  10. 0基础搭建基于OpenAI的ChatGPT钉钉聊天机器人

    前言:以下文章来源于我去年写的个人公众号.最近chatgpt又开始流行,顺便把原文内容发到博客园上遛一遛. 注意事项和指引: 注册openai账号,需要有梯子进行访问,最好是欧美国家的IP,亚洲国家容 ...

随机推荐

  1. 【Dotnet 工具箱】跨平台图表库 LiveCharts2

    你好,这里是 Dotnet 工具箱,定期分享 Dotnet 有趣,实用的工具和组件,希望对您有用! LiveCharts2 LiveCharts2 是一个简单.灵活.交互式以及功能强大的跨平台图表库. ...

  2. 【Vue】二

    一个第三方js处理类库 BootCDN Vue过滤器 Date.now() 获取时间戳 Date.now() 1652411231222 计算属性实现 <body> <div id= ...

  3. 如何在 .NET Core WebApi 中处理 MultipartFormDataContent

    最近在对某个后端服务做 .NET Core 升级时,里面使用了多处处理 MultipartFormDataContent 相关内容的代码.这些地方从 .NET Framework 迁移到 .NET C ...

  4. win11 计算器的进制转换

  5. #Python 利用pivot_table,数据透视表进行数据分析

    前面我们分享了,利用python进行数据合并和连接,但是工作中,我们往往需要对数据进一步的聚合或者运算,以求最后的数据结果. 今天我们就来学习一下利用pandas模块,对数据集进行数据透视分析. pi ...

  6. 2022-10-11:一个整数区间 [a, b] ( a < b ) 代表着从 a 到 b 的所有连续整数,包括 a 和 b。 给你一组整数区间intervals,请找到一个最小的集合 S, 使得

    2022-10-11:一个整数区间 [a, b] ( a < b ) 代表着从 a 到 b 的所有连续整数,包括 a 和 b. 给你一组整数区间intervals,请找到一个最小的集合 S, 使 ...

  7. 2020-12-24:MQ中,如何保证消息不丢失?

    福哥答案2020-12-24: 生产者丢失消息:如网络传输中丢失消息.MQ 发生异常未成功接收消息等情况. 解决办法:主流的 MQ 都有确认或事务机制,可以保证生产者将消息送达到 MQ.如 Rabbi ...

  8. vue之关闭eslint及vue/require-v-for-key 、vue/no-unsed-vars报错解决方法

    报错:Page1组件已经注册但是没有被使用.  vue/no-unused-components 如果报错以下: 解决方法: 首先打开项目中的package,json 找到eslint-config ...

  9. 在Centos7上安装PXE装机环境来批量安装操作系统

    步骤 1:安装必要的软件包 首先,需要确保系统已安装 dhcp.tftp-server 和 httpd 等软件包.可以使用以下命令进行安装: yum install -y dhcp tftp-serv ...

  10. python爬虫防止IP被封的一些措施(转)

    python爬虫防止IP被封的一些措施(转) 在编写爬虫爬取数据的时候,因为很多网站都有反爬虫措施,所以很容易被封IP,就不能继续爬了.在爬取大数据量的数据时更是瑟瑟发抖,时刻担心着下一秒IP可能就被 ...