摘要:又双叒叕种草了家装新风格?想要尝试却又怕踩雷?如果能够轻松Get量身定制的家装风格图,那该多好啊。现在,这一切都成为了可能!

本文分享自华为云社区《又双叒叕种草了新家装风格?AI帮你家居换装!》,作者:Emma_Liu。

Control Stable Diffusion with M-LSD 修改建筑及家居装修风格

你是否曾经想过,如果能够轻松地看到自己家居的不同风格,该有多好呢?现在,这一切都变得可能了!

让你的眼睛仔细观察这些图片,你会发现它们展现了不同的风格和氛围,从现代简约到古典优雅,从温馨舒适到时尚前卫,应有尽有。但是,你知道吗?这些图片都是由AI生成的!

它们看起来非常逼真,仿佛是真实的照片一样。这就是人工智能的奇妙之处,让我们可以轻松地预览不同的家居风格,不必实际进行装修。让我们一起来感受AI技术的魅力吧!

装修风格参考

现代极简风卧室

图一是原图,我要基于图一的装修布局重新装修一下,图二是M-LSD线段检测器的输出图像,图三是加入prompt为:现代极简风卧室生成图像,图四再补充一些prompt:现代极简风卧室,床是黄色的,墙是浅咖色。不得不说效果真不错!

卫生间

图一这种简单布局的卫生间我很是喜欢,康康其他风格的侘寂风卫生间 - 图二、三

客厅

换装ing——奶油风客厅——无名(不填prompt也可以生成不错的图片,很多惊喜诶)

别墅

我已经在幻想住上大别墅了看看别墅的效果怎么样

浪漫的海边别墅、新中式别墅

我想尝试用建筑设计图来看看能不能生成…哇,绝绝子——简约风,现代风

其他建筑

建模图变——欧式建筑

厂房变办公楼、大型超市、别墅(这样式的别墅)

好神奇,它是怎么做到的呢,来看看模型的介绍。

0.模型介绍

建筑的稳定扩散 | ControlNet模型-MLSD,随意创建建筑物、房间内部或外部以及独特的场景

ControlNet 最早是在L.Zhang等人的论文《Adding Conditional Control to Text-to-Image Diffusion Model》中提出的,目的是提高预训练的扩散模型的性能。它引入了一个框架,支持在扩散模型 (如 Stable Diffusion ) 上附加额外的多种空间语义条件来控制生成过程。为稳定扩散带来了前所未有的控制水平。

Mobile LSD (M-LSD): 《Towards Light-weight and Real-time Line Segment Detection》是用于资源受限环境的实时和轻量级线段检测器,M-LSD利用了极其高效的LSD体系结构和新的训练方案,包括SoL增强和几何学习方案。模型可以在GPU、CPU甚至移动设备上实时运行。

图1 GPU上M-LSD和现有LSD方法的比较

图2 移动设备上的推理速度和内存使用情况.

案例以分享至AI Gallery - AI建筑风格修改: ControlNet-MLSD,一起来运行代码,实现你的新装吧。

1.装包

!pip install transformers==4.29.0
!pip install diffusers==0.16.1
!pip install accelerate==0.17.1
!pip install gradio==3.32.0
!pip install translate==3.6.1

2.下载模型

使用mlsd, sd-controlnet-mlsd, stable-diffusion-v1-5预训练模型,为方便大家使用,已转存到华为云OBS中。

import os
import moxing as mox
pretrained_models = ['mlsd', 'sd-controlnet-mlsd', 'stable-diffusion-v1-5']
for pretrained_model in pretrained_models:
model_dir = os.path.join(os.getcwd(), pretrained_model)
if not os.path.exists(model_dir):
mox.file.copy_parallel(f'obs://modelarts-labs-bj4-v2/case_zoo/ControlNet/ControlNet_models/{pretrained_model}', model_dir)
if os.path.exists(model_dir):
print(f'{pretrained_model} download success')
else:
raise Exception(f'{pretrained_model} download Failed')
else:
print(f"{pretrained_model} already exists!")

3.加载模型

import torch
from PIL import Image
from mlsd import MLSDdetector
from translate import Translator
from diffusers.utils import load_image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
mlsd = MLSDdetector()
controlnet = ControlNetModel.from_pretrained("sd-controlnet-mlsd", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained("stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()

4.生成图像

首先,传入的图片会通过mlsd detector输出黑白线条图,然后基于此mlsd图像,通过controlnet和stable diffusion生成图像。

from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
ori = Image.open("1920245540.jpg")
mlsd = MLSDdetector()
mlsd_img = mlsd(ori, thr_v=0.1, thr_d=0.1, detect_resolution=512, image_resolution=512, return_pil=True)
trans = Translator(from_lang="ZH",to_lang="EN-US")
prompt = "现代极简风卧室,床是黄色的,墙是浅咖色"
en_prompt = trans.translate(prompt)
gen_img = pipe(en_prompt, mlsd_img, num_inference_steps=20).images[0]
fig = plt.figure(figsize=(25, 10))
ax1 = fig.add_subplot(1, 3, 1)
plt.title('Orignial image', fontsize=16)
ax1.axis('off')
ax1.imshow(ori)
ax2 = fig.add_subplot(1, 3, 2)
plt.title('ML Detector image', fontsize=16)
ax2.axis('off')
ax2.imshow(mlsd_img)
ax3 = fig.add_subplot(1, 3, 3)
plt.title('Generate image', fontsize=16)
ax3.axis('off')
ax3.imshow(gen_img)
plt.show()

5.Gradio可视化部署

Gradio应用启动后可在下方页面上传图片根据提示生成图像,您也可以分享public url在手机端,PC端进行访问生成图像。

参数说明

img_path:输入图像路径

prompt:提示词(建议填写)

n_prompt: 负面提示(可选)

num_inference_steps: 采样步数,一般15-30,值越大越精细,耗时越长

image_resolution: 对输入的图片进行最长边等比resize

detect_resolution:Hough Resolution,检测分辨率,值越小-线条越粗糙
value_threshold: Hough value threshold (MLSD),值越大-检测线条越多,越详细

distance_threshold: Hough distance threshold (MLSD),值越大-距离越远,检测到的线条越少

对比一下参数value_threshold,distance_threshold,当value_threshold值变大时,如图二所示,检测到的线段越少,获取到的信息也就越少,对控制生成后的图像来说,会缺失掉很多的细节;当distance_threshold值变大时,如图三所示,越远处的物体,提取到的线段越少,图像会更专注于前面的部分。这对于来调整生成的图像是一个很好的参考。

thr_v=0.1, thr_d=0.1

thr_v=0.5, thr_d=0.1

thr_v=0.1, thr_d=20

import gradio as gr
def mlsd(img, prompt, num_inference_steps, thr_v, thr_d, n_prompt, detect_resolution, image_resolution):
trans = Translator(from_lang="ZH",to_lang="EN-US")
prompt = trans.translate(prompt)
n_prompt = trans.translate(n_prompt)
mlsd = MLSDdetector()
mlsd_img = mlsd(img, thr_v=0.1, thr_d=0.1, detect_resolution=512, image_resolution=512, return_pil=True)
gen_img = pipe(prompt, mlsd_img, num_inference_steps=20, negative_prompt=n_prompt).images[0]
result = [mlsd_img, gen_img]
return result
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown("## Control Stable Diffusion with MLSD")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="描述")
run_button = gr.Button(label="Run")
with gr.Accordion("高级选项", open=False):
num_inference_steps = gr.Slider(label="图像生成步数", minimum=1, maximum=100, value=20, step=1)
value_threshold = gr.Slider(label="Hough value threshold (MLSD)", minimum=0.01, maximum=2.0, value=0.1, step=0.01)
distance_threshold = gr.Slider(label="Hough distance threshold (MLSD)", minimum=0.01, maximum=20.0, value=0.1, step=0.01)
n_prompt = gr.Textbox(label="否定提示",
value='lowres, extra digit, fewer digits, cropped, worst quality, low quality')
detect_resolution = gr.Slider(label="Hough Resolution", minimum=128, maximum=1024, value=512, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(columns=2, height='auto')
ips = [input_image, prompt, num_inference_steps, value_threshold, distance_threshold, n_prompt, detect_resolution, image_resolution]
run_button.click(fn=mlsd, inputs=ips, outputs=[result_gallery])
block.launch(share=True)

参考文献

  1. Paper: 《Adding Conditional Control to Text-to-Image Diffusion Model》
  2. Paper: 《Towards Light-weight and Real-time Line Segment Detection》
  3. Model:sd-controlnet-mlsdstable-diffusion-v1-5
  4. 案例代码地址:AI Gallery - AI建筑风格修改: ControlNet-MLSD 免费体验

点击关注,第一时间了解华为云新鲜技术~

又双叒叕种草了新家装风格?AI帮你家居换装的更多相关文章

  1. 【AS3 Coder】任务六:人物换装(纸娃娃)系统的制作

    使用框架:AS3(Flash Professional CS5.0及更高版本 + Flash Buider)任务描述:了解人物换装系统的制作原理难度系数:2 本章源码下载:http://www.iam ...

  2. DragonBones龙骨换装(局部换装+全局换装)

    参考: Egret官方换装动画 Egret换装三种方式 CSDN(全局换装) egret使用DragonBones实现简单的换装 换装,主要是替换任意插槽的图片,来达到局部换装的目的. 游戏中可以只制 ...

  3. 3D游戏中人物换装解决方案

    换装基本上是每个网游都必须有的一个功能,每种网游的做法都各有不同,有些是换掉整个模型,有些则是通过可以换掉模型的一个部分完成.前者属于整体换,相对简单些:后者则是通过部分替换实现,目前用的比较多,本文 ...

  4. bzoj3631 松鼠的新家

    Description 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在“树”上.松鼠想邀 ...

  5. 此博客主人已搬家访问新家地址:http://write.blog.csdn.net/postlist

    此博客主人已搬家访问新家地址:http://write.blog.csdn.net/postlist

  6. BZOJ 3631 【JLOI2014】 松鼠的新家

    Description 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在"树&q ...

  7. 【BZOJ-3631】松鼠的新家 树形DP?+ 倍增LCA + 打标记

    3631: [JLOI2014]松鼠的新家 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1231  Solved: 620[Submit][Stat ...

  8. 【bzoj3631】[JLOI2014]松鼠的新家

    题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在"树"上.松 ...

  9. 【BZOJ3631】松树的新家 树链剖分

    BZOJ3631 松树的新家 Description 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他 ...

  10. BZOJ 3631: [JLOI2014]松鼠的新家( 树链剖分 )

    裸树链剖分... ------------------------------------------------------------------- #include<bits/stdc++ ...

随机推荐

  1. 每个后端都应该了解的OpenResty入门以及网关安全实战

    简介 在官网上对 OpenResty 是这样介绍的(http://openresty.org): "OpenResty 是一个基于 Nginx 与 Lua 的高性能 Web 平台,其内部集成 ...

  2. log4j漏洞CVE-2021-44228复现-排雷篇

    一.环境搭建(用相同的环境才能保证一定成功) 下载vulhub,其他环境可能存在GET请求无效问题: git clone https://github.com/vulhub/vulhub.git 切换 ...

  3. 关于Windows打印机驱动相关问题-如何利用Java(或其他)调用打印机驱动程序完成原始文件翻译为PCL语言的步骤

    前面这些都是问题描述,问题在偏下面 场景:用户电脑上安装了PCL驱动,可通过驱动完成打印. 需求:现在需要提供一种脱离PC端完成文件上传并打印的功能.让用户使用手机或pc未安装驱动时都能打印文件. 目 ...

  4. Python Lambda 用法大全

    一.Lambda表达式基础 Lambda 的组成分为三部分 lambda arguments: expression arguments为Lambda表达式的参数列表,多个参数使用逗号分隔:expre ...

  5. helm仓库harbor搭建及上传helm

    1.仓库搭建(harbor) 注意: 基础环境为docker 使用docker-compose安装 1.1.docker安装 # 安装需要的软件包 # yum-util 提供yum-config-ma ...

  6. node 实现上传 和 下载 文件接口 简易版

    var express = require('express');var fs = require('fs');var path = require('path');var multipart = r ...

  7. 又欲又撩人,基于新版Bert-vits2V2.0.2音色模型雷电将军八重神子一键推理整合包分享

    Bert-vits2项目近期炸裂更新,放出了v2.0.2版本的代码,修正了存在于2.0先前版本的重大bug,并且重炼了底模,本次更新是即1.1.1版本后最重大的更新,支持了三语言训练及混合合成,并且做 ...

  8. TPshop商城的安装流程(windows)----超详细版

    提前准备 phpStudy下载:https://www.xp.cn/download.html 选择适合自己的版本下载 TPshop商城源文件下载链接:https://pan.baidu.com/s/ ...

  9. 可视化学习:WebGL的基础使用

    引言 继续复习可视化的学习.WebGL和其他Web端的图形系统存在很大的不同,是OpenGL ES规范在浏览器的实现,它最大的不同就在于它更接近底层,可以由开发者直接操作GPU来实现绘图,性能很好,可 ...

  10. [CF1034C] Region Separation

    题目描述 There are $ n $ cities in the Kingdom of Autumn, numbered from $ 1 $ to $ n $ . People can trav ...