Java 8 Learn Notes - Streams
Main reference
[1] http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples
1. How Streams Work
A stream represents a sequence of elements and supports different kind of operations to perform computations upon those elements:
List<String> myList =
Arrays.asList("a1", "a2", "b1", "c2", "c1"); myList
.stream()
.filter(s -> s.startsWith("c"))
.map(String::toUpperCase)
.sorted()
.forEach(System.out::println); // C1
// C2
2. Different Kinds of Streams
Streams can be created from various data sources, especially collections. Lists and Sets support new methods stream() and parallelStream() to either create a sequential or a parallel stream.
For Sequencial Stream
Arrays.asList("a1", "a2", "a3")
.stream()
.findFirst()
.ifPresent(System.out::println); // a1
Calling the method stream() on a list of objects returns a regular object stream. But we don't have to create collections in order to work with streams as we see in the next code sample:
Stream.of("a1", "a2", "a3")
.findFirst()
.ifPresent(System.out::println); // a1
Just use Stream.of() to create a stream from a bunch of object references.
Besides regular object streams Java 8 ships with special kinds of streams for working with the primitive data types int, long and double. As you might have guessed it's IntStream,LongStream and DoubleStream.
IntStreams can replace the regular for-loop utilizing IntStream.range()
IntStream.range(1, 4)
.forEach(System.out::println); // 1
// 2
// 3
All those primitive streams work just like regular object streams with the following differences: Primitive streams use specialized lambda expressions, e.g. IntFunction instead ofFunction or IntPredicate instead of Predicate. And primitive streams support the additional terminal aggregate operations sum() and average()
Arrays.stream(new int[] {1, 2, 3})
.map(n -> 2 * n + 1)
.average()
.ifPresent(System.out::println); // 5.0
Sometimes it's useful to transform a regular object stream to a primitive stream or vice versa. For that purpose object streams support the special mapping operations mapToInt(),mapToLong() and mapToDouble
Stream.of("a1", "a2", "a3")
.map(s -> s.substring(1))
.mapToInt(Integer::parseInt)
.max()
.ifPresent(System.out::println); // 3
Primitive streams can be transformed to object streams via mapToObj()
IntStream.range(1, 4)
.mapToObj(i -> "a" + i)
.forEach(System.out::println); // a1
// a2
// a3
Here's a combined example: the stream of doubles is first mapped to an int stream and than mapped to an object stream of strings:
Stream.of(1.0, 2.0, 3.0)
.mapToInt(Double::intValue)
.mapToObj(i -> "a" + i)
.forEach(System.out::println); // a1
// a2
// a3
3. Processing Order
An important characteristic of intermediate operations is laziness.
4. Reusing Streams
Java 8 streams cannot be reused. As soon as you call any terminal operation the stream is closed
Stream<String> stream =
Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> s.startsWith("a")); stream.anyMatch(s -> true); // ok
stream.noneMatch(s -> true); // exception
To overcome this limitation we have to to create a new stream chain for every terminal operation we want to execute, e.g. we could create a stream supplier to construct a new stream with all intermediate operations already set up:
Supplier<Stream<String>> streamSupplier =
() -> Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> s.startsWith("a")); streamSupplier.get().anyMatch(s -> true); // ok
streamSupplier.get().noneMatch(s -> true); // ok
Each call to get() constructs a new stream on which we are save to call the desired terminal operation.
5. Advanced Operations
Most code samples from this section use the following list of persons for demonstration purposes:
class Person {
String name;
int age;
Person(String name, int age) {
this.name = name;
this.age = age;
}
@Override
public String toString() {
return name;
}
}
List<Person> persons =
Arrays.asList(
new Person("Max", 18),
new Person("Peter", 23),
new Person("Pamela", 23),
new Person("David", 12));
Collect
Collect is an extremely useful terminal operation to transform the elements of the stream into a different kind of result, e.g. a List, Set or Map. Collect accepts a Collector which consists of four different operations: a supplier, an accumulator, a combiner and a finisher. This sounds super complicated at first, but the good part is Java 8 supports various built-in collectors via the Collectors class. So for the most common operations you don't have to implement a collector yourself.
List<Person> filtered =
persons
.stream()
.filter(p -> p.name.startsWith("P"))
.collect(Collectors.toList()); System.out.println(filtered); // [Peter, Pamela]
Then
Map<Integer, List<Person>> personsByAge = persons
.stream()
.collect(Collectors.groupingBy(p -> p.age)); personsByAge
.forEach((age, p) -> System.out.format("age %s: %s\n", age, p)); // age 18: [Max]
// age 23: [Peter, Pamela]
// age 12: [David]
Collectors are extremely versatile. You can also create aggregations on the elements of the stream, e.g. determining the average age of all persons:
Double averageAge = persons
.stream()
.collect(Collectors.averagingInt(p -> p.age)); System.out.println(averageAge); // 19.0
In order to transform the stream elements into a map, we have to specify how both the keys and the values should be mapped. Keep in mind that the mapped keys must be unique, otherwise an IllegalStateException is thrown. You can optionally pass a merge function as an additional parameter to bypass the exception:
Map<Integer, String> map = persons
.stream()
.collect(Collectors.toMap(
p -> p.age,
p -> p.name,
(name1, name2) -> name1 + ";" + name2)); System.out.println(map);
// {18=Max, 23=Peter;Pamela, 12=David}
Now that we know some of the most powerful built-in collectors, let's try to build our own special collector. We want to transform all persons of the stream into a single string consisting of all names in upper letters separated by the | pipe character. In order to achieve this we create a new collector via Collector.of(). We have to pass the four ingredients of a collector: a supplier, an accumulator, a combiner and a finisher.
Collector<Person, StringJoiner, String> personNameCollector =
Collector.of(
() -> new StringJoiner(" | "), // supplier
(j, p) -> j.add(p.name.toUpperCase()), // accumulator
(j1, j2) -> j1.merge(j2), // combiner
StringJoiner::toString); // finisher String names = persons
.stream()
.collect(personNameCollector); System.out.println(names); // MAX | PETER | PAMELA | DAVID
Since strings in Java are immutable, we need a helper class like StringJoiner to let the collector construct our string. The supplier initially constructs such a StringJoiner with the appropriate delimiter. The accumulator is used to add each persons upper-cased name to the StringJoiner. The combiner knows how to merge two StringJoiners into one. In the last step the finisher constructs the desired String from the StringJoiner.
FlatMap
We've already learned how to transform the objects of a stream into another type of objects by utilizing the map operation. Map is kinda limited because every object can only be mapped to exactly one other object. But what if we want to transform one object into multiple others or none at all? This is where flatMap comes to the rescue.
FlatMap transforms each element of the stream into a stream of other objects. So each object will be transformed into zero, one or multiple other objects backed by streams. The contents of those streams will then be placed into the returned stream of the flatMap operation.
Before we see flatMap in action we need an appropriate type hierarchy:
class Foo {
String name;
List<Bar> bars = new ArrayList<>();
Foo(String name) {
this.name = name;
}
}
class Bar {
String name;
Bar(String name) {
this.name = name;
}
}
Next, we utilize our knowledge about streams to instantiate a couple of objects:
List<Foo> foos = new ArrayList<>(); // create foos
IntStream
.range(1, 4)
.forEach(i -> foos.add(new Foo("Foo" + i))); // create bars
foos.forEach(f ->
IntStream
.range(1, 4)
.forEach(i -> f.bars.add(new Bar("Bar" + i + " <- " + f.name))));
Now we have a list of three foos each consisting of three bars.
FlatMap accepts a function which has to return a stream of objects. So in order to resolve the bar objects of each foo, we just pass the appropriate function:
foos.stream()
.flatMap(f -> f.bars.stream())
.forEach(b -> System.out.println(b.name)); // Bar1 <- Foo1
// Bar2 <- Foo1
// Bar3 <- Foo1
// Bar1 <- Foo2
// Bar2 <- Foo2
// Bar3 <- Foo2
// Bar1 <- Foo3
// Bar2 <- Foo3
// Bar3 <- Foo3
Finally, the above code example can be simplified into a single pipeline of stream operations:
IntStream.range(1, 4)
.mapToObj(i -> new Foo("Foo" + i))
.peek(f -> IntStream.range(1, 4)
.mapToObj(i -> new Bar("Bar" + i + " <- " f.name))
.forEach(f.bars::add))
.flatMap(f -> f.bars.stream())
.forEach(b -> System.out.println(b.name));
FlatMap is also available for the Optional class introduced in Java 8. Optionals flatMapoperation returns an optional object of another type. So it can be utilized to prevent nastynull checks.
Think of a highly hierarchical structure like this:
class Outer {
Nested nested;
}
class Nested {
Inner inner;
}
class Inner {
String foo;
}
In order to resolve the inner string foo of an outer instance you have to add multiple null checks to prevent possible NullPointerExceptions:
Outer outer = new Outer();
if (outer != null && outer.nested != null && outer.nested.inner != null) {
System.out.println(outer.nested.inner.foo);
}
The same behavior can be obtained by utilizing optionals flatMap operation:
Optional.of(new Outer())
.flatMap(o -> Optional.ofNullable(o.nested))
.flatMap(n -> Optional.ofNullable(n.inner))
.flatMap(i -> Optional.ofNullable(i.foo))
.ifPresent(System.out::println);
Reduce
The reduction operation combines all elements of the stream into a single result. Java 8 supports three different kind of reduce methods. The first one reduces a stream of elements to exactly one element of the stream.
persons
.stream()
.reduce((p1, p2) -> p1.age > p2.age ? p1 : p2)
.ifPresent(System.out::println); // Pamela
The second reduce method accepts both an identity value and a BinaryOperatoraccumulator. This method can be utilized to construct a new Person with the aggregated names and ages from all other persons in the stream:
Person result =
persons
.stream()
.reduce(new Person("", 0), (p1, p2) -> {
p1.age += p2.age;
p1.name += p2.name;
return p1;
}); System.out.format("name=%s; age=%s", result.name, result.age);
// name=MaxPeterPamelaDavid; age=76
The third reduce method accepts three parameters: an identity value, a BiFunctionaccumulator and a combiner function of type BinaryOperator. Since the identity values type is not restricted to the Person type, we can utilize this reduction to determine the sum of ages from all persons:
Integer ageSum = persons
.stream()
.reduce(0, (sum, p) -> sum += p.age, (sum1, sum2) -> sum1 + sum2); System.out.println(ageSum); // 76
6. Parallel Streams
It can be stated that parallel streams can bring be a nice performance boost to streams with a large amount of input elements. But keep in mind that some parallel stream operations like reduce and collect need additional computations (combine operations) which isn't needed when executed sequentially.
Furthermore we've learned that all parallel stream operations share the same JVM-wide common ForkJoinPool. So you probably want to avoid implementing slow blocking stream operations since that could potentially slow down other parts of your application which rely heavily on parallel streams.
Java 8 Learn Notes - Streams的更多相关文章
- Java 8 Learn Notes
Main reference: [1] http://winterbe.com/posts/2014/03/16/java-8-tutorial/ [2] https://plus.google.co ...
- Forget Java to learn Javascript from 0.--Day 1
The first day,when I read 'we need practice so we need a Javascript Interpreter.','Every browser has ...
- Forget Java to learn Javascript from 0.--Preface
I'm going to start to learn Javascript in this month. Someone told me you can't learn another langua ...
- Linux Academy Learn Notes
Linux Essentials Certification Globbing ls ?.txt --- ? stands for one character while * means one or ...
- [Java coding] leetcode notes
1, 如何不排序而找到最大,次大或者最小值? var int max1, max2, min1; iterate array once: update max1, max2, min1, for ex ...
- Java 8 中的 Streams API 详解
为什么需要 Stream Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念.它也不同于 StAX 对 ...
- Bash Scripting Learn Notes
References: [1] http://www.tldp.org/LDP/Bash-Beginners-Guide/html/ 1. Executing programs from a scri ...
- Java 8中的 Streams API 详解
为什么需要 Stream Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念.它也不同于 StAX 对 ...
- (转)Java 8 中的 Streams API 详解
为什么需要 Stream Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念.它也不同于 StAX 对 ...
随机推荐
- Python之路-Linux命令基础(5)
作业一:nginx服务 二进制安装nginx包 1.使用网络yum源 2.使用yum安装epel-release扩展源 [root@localhost html]# yum install epel- ...
- 老李分享:使用 Python 的 Socket 模块开发 UDP 扫描工具
老李分享:使用 Python 的 Socket 模块开发 UDP 扫描工具 poptest是业内唯一的测试开发工程师培训机构,测试开发工程师主要是为测试服务开发测试工具,在工作中要求你做网络级别的安全 ...
- ASP.NET Core 网站发布到Linux服务器
长期以来,使用.NET开发的应用只能运行在Windows平台上面,而目前国内蓬勃发展的互联网公司由于成本的考虑,大量使用免费的Linux平台,这就使得.NET空有一身绝技但无法得到广大的施展空间,.N ...
- 用java写的一个程序,可以调用windows系统中自带的各种工具,例如截图,便签等
由于图片资源没有上传,所以运行后不会有图片,感兴趣的同学可以@我,我打包上传, package SmallPrograme; import java.awt.*; import java.awt.ev ...
- 1133: 零起点学算法40——多组测试数据(a+b)II
1133: 零起点学算法40--多组测试数据(a+b)II Time Limit: 1 Sec Memory Limit: 64 MB 64bit IO Format: %lldSubmitte ...
- 04 Feasibility of Learning
机器学习是设计算法A,在假设集合H里,根据给定数据集D,选出与实际模式f最为相近的假设g(g可能与f相同,也可能不同). 那什么情况下学习是可行的?即保证g和f是相似的. 1.数据集内的表现g约等于f ...
- CSS3实现一束光划过图片、和文字特效
在打折图标里面 实现一道白光划过的动画效果 css: <!DOCTYPE html><html><head><meta charset="utf-8 ...
- Felx布局(三)
flex网格布局 平均分布 最简单的网格布局,就是平均分布.在容器里面平均分配空间,跟上面的骰子布局很像,但是需要设置项目的自动缩放
- [进程管理] Linux中Load average的理解
Load average的定义 系统平均负载被定义为在特定时间间隔内运行队列中的平均进程树.如果一个进程满足以下条件则其就会位于运行队列中: - 它没有在等待I/O操作的结果 - 它没有主动进入等待状 ...
- android在myeclipse上创建的项目各种报错
这几天被android弄得头疼死了.差不多把电脑弄了个遍. 先是离线安装ADT,下载ADT,然后配置,但是因为ADT与MyEclipse冲突.所以直接不要再myeclipse下弄Android的环境了 ...