octomap中3d-rrt路径规划
在octomap中制定起止点,目标点,使用rrt规划一条路径出来,没有运动学,动力学的限制,只要能避开障碍物。
效果如下(绿线是规划的路线,红线是B样条优化的曲线):
#include "ros/ros.h"
#include <octomap_msgs/Octomap.h>
#include <octomap_msgs/conversions.h>
#include <octomap_ros/conversions.h>
#include <octomap/octomap.h>
#include <message_filters/subscriber.h>
#include "visualization_msgs/Marker.h"
#include <trajectory_msgs/MultiDOFJointTrajectory.h>
#include <nav_msgs/Odometry.h>
#include <geometry_msgs/Pose.h>
#include <nav_msgs/Path.h>
#include <geometry_msgs/PoseStamped.h>
#include <ompl/base/spaces/SE3StateSpace.h>
#include <ompl/base/spaces/SE3StateSpace.h>
#include <ompl/base/OptimizationObjective.h>
#include <ompl/base/objectives/PathLengthOptimizationObjective.h>
// #include <ompl/geometric/planners/rrt/RRTstar.h>
#include <ompl/geometric/planners/rrt/InformedRRTstar.h>
#include <ompl/geometric/SimpleSetup.h>
#include <ompl/config.h>
#include <iostream>
#include "fcl/config.h"
#include "fcl/octree.h"
#include "fcl/traversal/traversal_node_octree.h"
#include "fcl/collision.h"
#include "fcl/broadphase/broadphase.h"
#include "fcl/math/transform.h"
namespace ob = ompl::base;
namespace og = ompl::geometric;
// Declear some global variables
//ROS publishers
ros::Publisher vis_pub;
ros::Publisher traj_pub;
class planner {
public:
void setStart(double x, double y, double z)
{
ob::ScopedState<ob::SE3StateSpace> start(space);
start->setXYZ(x,y,z);
start->as<ob::SO3StateSpace::StateType>(1)->setIdentity();
pdef->clearStartStates();
pdef->addStartState(start);
}
void setGoal(double x, double y, double z)
{
ob::ScopedState<ob::SE3StateSpace> goal(space);
goal->setXYZ(x,y,z);
goal->as<ob::SO3StateSpace::StateType>(1)->setIdentity();
pdef->clearGoal();
pdef->setGoalState(goal);
std::cout << "goal set to: " << x << " " << y << " " << z << std::endl;
}
void updateMap(std::shared_ptr<fcl::CollisionGeometry> map)
{
tree_obj = map;
}
// Constructor
planner(void)
{
//四旋翼的障碍物几何形状
Quadcopter = std::shared_ptr<fcl::CollisionGeometry>(new fcl::Box(0.8, 0.8, 0.3));
//分辨率参数设置
fcl::OcTree* tree = new fcl::OcTree(std::shared_ptr<const octomap::OcTree>(new octomap::OcTree(0.15)));
tree_obj = std::shared_ptr<fcl::CollisionGeometry>(tree);
//解的状态空间
space = ob::StateSpacePtr(new ob::SE3StateSpace());
// create a start state
ob::ScopedState<ob::SE3StateSpace> start(space);
// create a goal state
ob::ScopedState<ob::SE3StateSpace> goal(space);
// set the bounds for the R^3 part of SE(3)
// 搜索的三维范围设置
ob::RealVectorBounds bounds(3);
bounds.setLow(0,-5);
bounds.setHigh(0,5);
bounds.setLow(1,-5);
bounds.setHigh(1,5);
bounds.setLow(2,0);
bounds.setHigh(2,3);
space->as<ob::SE3StateSpace>()->setBounds(bounds);
// construct an instance of space information from this state space
si = ob::SpaceInformationPtr(new ob::SpaceInformation(space));
start->setXYZ(0,0,0);
start->as<ob::SO3StateSpace::StateType>(1)->setIdentity();
// start.random();
goal->setXYZ(0,0,0);
goal->as<ob::SO3StateSpace::StateType>(1)->setIdentity();
// goal.random();
// set state validity checking for this space
si->setStateValidityChecker(std::bind(&planner::isStateValid, this, std::placeholders::_1 ));
// create a problem instance
pdef = ob::ProblemDefinitionPtr(new ob::ProblemDefinition(si));
// set the start and goal states
pdef->setStartAndGoalStates(start, goal);
// set Optimizattion objective
pdef->setOptimizationObjective(planner::getPathLengthObjWithCostToGo(si));
std::cout << "Initialized: " << std::endl;
}
// Destructor
~planner()
{
}
void replan(void)
{
std::cout << "Total Points:" << path_smooth->getStateCount () << std::endl;
if(path_smooth->getStateCount () <= 2)
plan();
else
{
for (std::size_t idx = 0; idx < path_smooth->getStateCount (); idx++)
{
if(!replan_flag)
replan_flag = !isStateValid(path_smooth->getState(idx));
else
break;
}
if(replan_flag)
plan();
else
std::cout << "Replanning not required" << std::endl;
}
}
void plan(void)
{
// create a planner for the defined space
og::InformedRRTstar* rrt = new og::InformedRRTstar(si);
//设置rrt的参数range
rrt->setRange(0.2);
ob::PlannerPtr plan(rrt);
// set the problem we are trying to solve for the planner
plan->setProblemDefinition(pdef);
// perform setup steps for the planner
plan->setup();
// print the settings for this space
si->printSettings(std::cout);
std::cout << "problem setting\n";
// print the problem settings
pdef->print(std::cout);
// attempt to solve the problem within one second of planning time
ob::PlannerStatus solved = plan->solve(1);
if (solved)
{
// get the goal representation from the problem definition (not the same as the goal state)
// and inquire about the found path
std::cout << "Found solution:" << std::endl;
ob::PathPtr path = pdef->getSolutionPath();
og::PathGeometric* pth = pdef->getSolutionPath()->as<og::PathGeometric>();
pth->printAsMatrix(std::cout);
// print the path to screen
// path->print(std::cout);
nav_msgs::Path msg;
msg.header.stamp = ros::Time::now();
msg.header.frame_id = "map";
for (std::size_t path_idx = 0; path_idx < pth->getStateCount (); path_idx++)
{
const ob::SE3StateSpace::StateType *se3state = pth->getState(path_idx)->as<ob::SE3StateSpace::StateType>();
// extract the first component of the state and cast it to what we expect
const ob::RealVectorStateSpace::StateType *pos = se3state->as<ob::RealVectorStateSpace::StateType>(0);
// extract the second component of the state and cast it to what we expect
const ob::SO3StateSpace::StateType *rot = se3state->as<ob::SO3StateSpace::StateType>(1);
geometry_msgs::PoseStamped pose;
// pose.header.frame_id = "/world"
pose.pose.position.x = pos->values[0];
pose.pose.position.y = pos->values[1];
pose.pose.position.z = pos->values[2];
pose.pose.orientation.x = rot->x;
pose.pose.orientation.y = rot->y;
pose.pose.orientation.z = rot->z;
pose.pose.orientation.w = rot->w;
msg.poses.push_back(pose);
}
traj_pub.publish(msg);
//Path smoothing using bspline
//B样条曲线优化
og::PathSimplifier* pathBSpline = new og::PathSimplifier(si);
path_smooth = new og::PathGeometric(dynamic_cast<const og::PathGeometric&>(*pdef->getSolutionPath()));
pathBSpline->smoothBSpline(*path_smooth,3);
// std::cout << "Smoothed Path" << std::endl;
// path_smooth.print(std::cout);
//Publish path as markers
nav_msgs::Path smooth_msg;
smooth_msg.header.stamp = ros::Time::now();
smooth_msg.header.frame_id = "map";
for (std::size_t idx = 0; idx < path_smooth->getStateCount (); idx++)
{
// cast the abstract state type to the type we expect
const ob::SE3StateSpace::StateType *se3state = path_smooth->getState(idx)->as<ob::SE3StateSpace::StateType>();
// extract the first component of the state and cast it to what we expect
const ob::RealVectorStateSpace::StateType *pos = se3state->as<ob::RealVectorStateSpace::StateType>(0);
// extract the second component of the state and cast it to what we expect
const ob::SO3StateSpace::StateType *rot = se3state->as<ob::SO3StateSpace::StateType>(1);
geometry_msgs::PoseStamped point;
// pose.header.frame_id = "/world"
point.pose.position.x = pos->values[0];
point.pose.position.y = pos->values[1];
point.pose.position.z = pos->values[2];
point.pose.orientation.x = rot->x;
point.pose.orientation.y = rot->y;
point.pose.orientation.z = rot->z;
point.pose.orientation.w = rot->w;
smooth_msg.poses.push_back(point);
std::cout << "Published marker: " << idx << std::endl;
}
vis_pub.publish(smooth_msg);
// ros::Duration(0.1).sleep();
// Clear memory
pdef->clearSolutionPaths();
replan_flag = false;
}
else
std::cout << "No solution found" << std::endl;
}
private:
// construct the state space we are planning in
ob::StateSpacePtr space;
// construct an instance of space information from this state space
ob::SpaceInformationPtr si;
// create a problem instance
ob::ProblemDefinitionPtr pdef;
og::PathGeometric* path_smooth;
bool replan_flag = false;
std::shared_ptr<fcl::CollisionGeometry> Quadcopter;
std::shared_ptr<fcl::CollisionGeometry> tree_obj;
bool isStateValid(const ob::State *state)
{
// cast the abstract state type to the type we expect
const ob::SE3StateSpace::StateType *se3state = state->as<ob::SE3StateSpace::StateType>();
// extract the first component of the state and cast it to what we expect
const ob::RealVectorStateSpace::StateType *pos = se3state->as<ob::RealVectorStateSpace::StateType>(0);
// extract the second component of the state and cast it to what we expect
const ob::SO3StateSpace::StateType *rot = se3state->as<ob::SO3StateSpace::StateType>(1);
fcl::CollisionObject treeObj((tree_obj));
fcl::CollisionObject aircraftObject(Quadcopter);
// check validity of state defined by pos & rot
fcl::Vec3f translation(pos->values[0],pos->values[1],pos->values[2]);
fcl::Quaternion3f rotation(rot->w, rot->x, rot->y, rot->z);
aircraftObject.setTransform(rotation, translation);
fcl::CollisionRequest requestType(1,false,1,false);
fcl::CollisionResult collisionResult;
fcl::collide(&aircraftObject, &treeObj, requestType, collisionResult);
return(!collisionResult.isCollision());
}
// Returns a structure representing the optimization objective to use
// for optimal motion planning. This method returns an objective which
// attempts to minimize the length in configuration space of computed
// paths.
ob::OptimizationObjectivePtr getThresholdPathLengthObj(const ob::SpaceInformationPtr& si)
{
ob::OptimizationObjectivePtr obj(new ob::PathLengthOptimizationObjective(si));
// obj->setCostThreshold(ob::Cost(1.51));
return obj;
}
ob::OptimizationObjectivePtr getPathLengthObjWithCostToGo(const ob::SpaceInformationPtr& si)
{
ob::OptimizationObjectivePtr obj(new ob::PathLengthOptimizationObjective(si));
obj->setCostToGoHeuristic(&ob::goalRegionCostToGo);
return obj;
}
};
void octomapCallback(const octomap_msgs::Octomap::ConstPtr &msg, planner* planner_ptr)
{
//loading octree from binary
// const std::string filename = "/home/xiaopeng/dense.bt";
// octomap::OcTree temp_tree(0.1);
// temp_tree.readBinary(filename);
// fcl::OcTree* tree = new fcl::OcTree(std::shared_ptr<const octomap::OcTree>(&temp_tree));
// convert octree to collision object
octomap::OcTree* tree_oct = dynamic_cast<octomap::OcTree*>(octomap_msgs::msgToMap(*msg));
fcl::OcTree* tree = new fcl::OcTree(std::shared_ptr<const octomap::OcTree>(tree_oct));
// Update the octree used for collision checking
planner_ptr->updateMap(std::shared_ptr<fcl::CollisionGeometry>(tree));
planner_ptr->replan();
}
void odomCb(const nav_msgs::Odometry::ConstPtr &msg, planner* planner_ptr)
{
planner_ptr->setStart(msg->pose.pose.position.x, msg->pose.pose.position.y, msg->pose.pose.position.z);
}
void startCb(const geometry_msgs::PointStamped::ConstPtr &msg, planner* planner_ptr)
{
planner_ptr->setStart(msg->point.x, msg->point.y, msg->point.z);
}
void goalCb(const geometry_msgs::PointStamped::ConstPtr &msg, planner* planner_ptr)
{
planner_ptr->setGoal(msg->point.x, msg->point.y, msg->point.z);
planner_ptr->plan();
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "octomap_planner");
ros::NodeHandle n;
planner planner_object;
ros::Subscriber octree_sub = n.subscribe<octomap_msgs::Octomap>("/octomap_binary", 1, boost::bind(&octomapCallback, _1, &planner_object));
// ros::Subscriber odom_sub = n.subscribe<nav_msgs::Odometry>("/rovio/odometry", 1, boost::bind(&odomCb, _1, &planner_object));
ros::Subscriber goal_sub = n.subscribe<geometry_msgs::PointStamped>("/goal/clicked_point", 1, boost::bind(&goalCb, _1, &planner_object));
ros::Subscriber start_sub = n.subscribe<geometry_msgs::PointStamped>("/start/clicked_point", 1, boost::bind(&startCb, _1, &planner_object));
// vis_pub = n.advertise<visualization_msgs::Marker>( "visualization_marker", 0 );
vis_pub = n.advertise<nav_msgs::Path>( "visualization_marker", 0 );
// traj_pub = n.advertise<trajectory_msgs::MultiDOFJointTrajectory>("waypoints",1);
traj_pub = n.advertise<nav_msgs::Path>("waypoints",1);
std::cout << "OMPL version: " << OMPL_VERSION << std::endl;
ros::spin();
return 0;
}
octomap中3d-rrt路径规划的更多相关文章
- RRT路径规划算法
传统的路径规划算法有人工势场法.模糊规则法.遗传算法.神经网络.模拟退火算法.蚁群优化算法等.但这些方法都需要在一个确定的空间内对障碍物进行建模,计算复杂度与机器人自由度呈指数关系,不适合解决多自由度 ...
- ROS(indigo)RRT路径规划
源码地址:https://github.com/nalin1096/path_planning 路径规划 使用ROS实现了基于RRT路径规划算法. 发行版 - indigo 算法在有一个障碍的环境找到 ...
- RRT路径规划算法(matlab实现)
基于快速扩展随机树(RRT / rapidly exploring random tree)的路径规划算法,通过对状态空间中的采样点进行碰撞检测,避免了对空间的建模,能够有效地解决高维空间和复杂约束的 ...
- V-rep学习笔记:机器人路径规划1
Motion Planning Library V-REP 从3.3.0开始,使用运动规划库OMPL作为插件,通过调用API的方式代替以前的方法进行运动规划(The old path/motion ...
- 游戏AI之路径规划(3)
目录 使用路径点(Way Point)作为节点 洪水填充算法创建路径点 使用导航网(Navigation Mesh)作为节点 区域分割 预计算 路径查询表 路径成本查询表 寻路的改进 平均帧运算 路径 ...
- PRM路径规划算法
路径规划作为机器人完成各种任务的基础,一直是研究的热点.研究人员提出了许多规划方法:如人工势场法.单元分解法.随机路标图(PRM)法.快速搜索树(RRT)法等.传统的人工势场.单元分解法需要对空间中的 ...
- iOS高德地图使用-搜索,路径规划
项目中想加入地图功能,使用高德地图第三方,想要实现确定一个位置,搜索路线并且显示的方法.耗了一番功夫,总算实现了. 效果 WeChat_1462507820.jpeg 一.配置工作 1.申请key 访 ...
- 路径规划: PRM 路径规划算法 (Probabilistic Roadmaps 随机路标图)
随机路标图-Probabilistic Roadmaps (路径规划算法) 路径规划作为机器人完成各种任务的基础,一直是研究的热点.研究人员提出了许多规划方法如: 1. A* 2. Djstar 3. ...
- 机器人路径规划其一 Dijkstra Algorithm【附动态图源码】
首先要说明的是,机器人路径规划与轨迹规划属于两个不同的概念,一般而言,轨迹规划针对的对象为机器人末端坐标系或者某个关节的位置速度加速度在时域的规划,常用的方法为多项式样条插值,梯形轨迹等等,而路径规划 ...
随机推荐
- poj3061尺取法
A sequence of N positive integers (10 < N < 100 000), each of them less than or equal 10000, a ...
- java web 简单的登录注册
--sql文件 create database studentgouse studentgocreate table stuinfo(--stuid int primary key identity( ...
- vector实现最大流EK算法
序: 在之前的文章中实现了不利用STL实现EK算法,效率也较高.这次我们企图简化代码,减少变量的使用与手写模拟的代码. 注意:vector等STL的container在不开O2优化的时候实现同一个效果 ...
- Docker - 容器直连
本文是在原文基础上的实际操作验证记录和细节补充. 默认情况下,容器连接到虚拟网桥docker0提供的虚拟子网中,容器之间通过默认网关(虚拟网桥docker0接口地址)建立连接. 如果不使用虚拟网桥,用 ...
- 转:Centos6.5_x86安装Redis。
Redis是一个高性能的,开源key-value型数据库.是构建高性能,可扩展的Web应用的完美解决方案,可以内存存储亦可持久化存储.因为要使用跨进程,跨服务级别的数据缓存,在对比多个方案后,决定使用 ...
- RabbitMQ4--发后即忘和RPC
在项目中引入RabbitMQ通常会考虑它会带来的好处:解耦应用程序,实现不同编程语言之间的互通,解除对特定通信协议的依赖,解除应用程序在时序上执行的依赖(异步).落实到代码层面就是两种常用应用模式:& ...
- Mongodb密码安全设置
先从官网下载mongo安装包(建议安装3.0之后的版本)版本选择下载链接: https://www.mongodb.org/dl/win32/x86_64-2008plus-ssl?_ga=2.210 ...
- TP框架 命名空间 与第三方类
命名空间 相当于虚拟目录 所有类文件都放在虚拟目录 功能:实现自动加载类 TP框架的命名空间要更复杂 内容=> 命名空间中定义和使用 都用\1初始命名空间 相当于 根目录 如:Library文件 ...
- Google Android Studio Kotlin 开发环境配置
Google 近日开发者大会宣布Kotlin成为Android开发的第一级语言,即Android官方开发语言,可见Google对Kotlin的重视,本文就介绍一下Android Studio下的Kot ...
- python 多线程,进程的理解
python的threading.Thread类有一个run方法,用于定义线程的功能函数,可以在自己的线程类中覆盖该方法.而创建自己的线程实例后,通过Thread类的start方法,可以启动该线程,交 ...