转自YXDs

题目传送门
不知道今天是怎么了,可能是空调吹多了吧,一直不在状态,连递推题我都做不来了……(扎Zn了老Fe……)
然而,不管环境如何恶劣,我们仍要努力学习,为了自己的明天而奋斗。(说的好像跟真的一样)
其实这题就是一个递推,现在我们考虑第i个数,定义f[i][j]表示序列里有i个数,逆序对的组数为j的方案数。
因为第i个数的权值就是i,则不管第i个数插到序列里的哪个位置,都会和在它后面的数形成逆序对,因此第i个数插到序列里最多形成i-1个逆序对,最少形成0个。
所以,我们就得到了递推公式:f[i][j]=Σf[i-1][j-k] (j-i+1<=k<=j)
但是现在的时间复杂度仍然是O(n^3)的,n的范围是1000,铁定TLE。
但是看到上面的递推式中有Σ,于是我们就想到了前缀和,降掉一维的复杂度,过掉这道题非常轻松。
另外,由递推式可发现,第i个数的所有逆序对方案数都只跟第i-1个数的逆序对方案数有关,因此可以使用滚动数组来存储,减少内存的使用。
(虽然在这题里并没有什么卵用,在BZOJ上实测出来大概省了80+kb的空间吧……)
注意:本题需要考虑中途答案为负的情况,虽然只要加上p就行了,但是一定要注意考虑,别忘了。
O(n^3)算法(主要是怕自己会忘):

#include <cstdio>
#define p 10000
using namespace std; int n,m,f[][]; int main(void){
scanf("%d%d",&n,&m);
for (int i=; i<=n; ++i) f[i][]=;
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
for (int k=; k<=j&&k<i; ++k)
f[i][j]=(f[i][j]+f[i-][j-k])%p;
printf("%d",f[n][m]);
return ;
}

N^3

O(n^2)算法(AC代码):

#include <cstdio>
#define p 10000
using namespace std; int n,m,f[],c[]; int main(void){
scanf("%d%d",&n,&m);
f[]=;
for (int i=; i<=n; ++i){
for (int j=; j<=m; ++j) c[j]=(c[j-]+f[j])%p;
for (int j=; j<=m; ++j)
if (j>) if (j>=i) f[j]=(c[j]-c[j-i]+p)%p;
else f[j]=c[j];
else f[j]=;
}
printf("%d",f[m]);
return ;
}

AC

附:公式改进法,我在洛谷上看见的。
由上面的那个递推公式可知:f[i][j]=f[i-1][j]+f[i-1][j-1]+…+f[i-1][j-i+1]
又f[i][j-1]=f[i-1][j-1]+f[i-1][j-2]+…+f[i-1][j-i]
所以f[i][j]=f[i-1][j]+f[i][j-1]-f[i-1][j-i]
虽然这个公式的变形在这题中并没有什么特别大的用处,但是这种思想是非常好的,常常可以把一些非常复杂的公式变得简单些,公式的特点也更明显一些。
所以我们还是有必要学习一下这种思想的。
然后就是递推了,其他都和上面的代码差不多的。

#include <cstdio>
#define p 10000
using namespace std; int n,m,f[][]; int main(void){
scanf("%d%d",&n,&m);
f[][]=;
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
if (j>) if (j>=i) f[i%][j]=(f[(i-)%][j]+f[i%][j-]-f[(i-)%][j-i]+p)%p;
else f[i%][j]=(f[(i-)%][j]+f[i%][j-])%p;
else f[i%][j]=(f[(i-)%][j])%p;
printf("%d",f[n%][m]>?f[n%][m]:-);
return ;
}

AC-公式改进法

BZOJ2431_逆序对数列_KEY的更多相关文章

  1. bzoj2431:[HAOI2009]逆序对数列

    单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...

  2. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  3. 2431: [HAOI2009]逆序对数列

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 954  Solved: 548[Submit][Status ...

  4. 【BZOJ2431】逆序对数列(动态规划)

    [BZOJ2431]逆序对数列(动态规划) 题面 Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组 ...

  5. P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那 ...

  6. bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...

  7. BZOJ2431 HAOI2009 逆序对数列 【DP】*

    BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai​,如果有i<j且ai>aja_i>a_jai​>aj​,那么我们称aia ...

  8. 洛谷P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易 ...

  9. bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Stat ...

随机推荐

  1. 7.20.01 java格式化输出 printf 例子

    java格式化输出 printf 例子 importjava.util.Date; publicclassPrintf { publicstaticvoidmain(String[] args) { ...

  2. mapper.xml是怎样实现Dao层接口

    上午写了一个简单的 从xml读取信息实例化一个Bean对象.下午就开始想mybatis是怎么通过xml文件来实现dao层接口的,一开始想直接用Class.forName(String name)然后调 ...

  3. 再起航,我的学习笔记之JavaScript设计模式17(模板方法模式)

    模板方法模式 由模板方法模式开始我们正式告别结构型设计模式,开始行为型设计模式的学习分享 行为型设计模式用于不同对象之间职责划分或算法抽象,行为型设计模式不仅仅涉及类和对象,还涉及类或对象之间的交流模 ...

  4. Selenium+IDEA+Maven+TestNG环境搭建

    第一 安装java环境. 1. 下载并安装Jdk1.7或Jdk1.8 http://www.oracle.com/technetwork/java/javase/downloads/index.htm ...

  5. 把JavaScript代码改成ES6语法不完全指南

    目录 * 核心例子 * 修改成静态变量(const)或块级变量(let) * 开始修改 * 疑问解释(重复定义会发生什么) * 疑问解释(let的块级作用域是怎样的) * 疑问解释(const定义的变 ...

  6. Hashtable、synchronizedMap、ConcurrentHashMap 比较

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytp18 Hashtable.synchronizedMap.Concurren ...

  7. 浅谈java中==与equals的区别

    今天做了一个业务模块,需要简单的遍历比较值,所以习惯性的用了 "==" ,但是结果没有达到预想的结果是什么鬼? 看到这里,有人一定会指出这俩货不是基本变量! "关系操作符 ...

  8. 文件系统的几种类型:ext3, swap, RAID, LVM

    分类: 架构设计与优化 1.  ext3 在异常断电或系统崩溃(不洁关机, unclean system shutdown  ).每个已挂载ext2文件系统计算机必须使用e2fsck程序来检查其一致性 ...

  9. 2015级软工实践k班第一次作业-准备

    第一次作业-准备······ 几篇文章阅读下来发现一个事实,还是要有明确的目标,清楚自己需要做什么最为重要.然后根据目标确定需要为之所做的准备工作,考研也好,工作也罢,都是服务于自己的目标. 问题答应 ...

  10. 201521123029《Java程序设计》第五周学习总结

    1. 本周学习总结 1.1 尝试使用思维导图总结有关多态与接口的知识点. 1.2 可选:使用常规方法总结其他上课内容. 答:1. 课上讲了匿名内部类的使用,其中内部类就是定义在另一个类里面的类,与之相 ...