BZOJ2431_逆序对数列_KEY
转自YXDs
题目传送门
不知道今天是怎么了,可能是空调吹多了吧,一直不在状态,连递推题我都做不来了……(扎Zn了老Fe……)
然而,不管环境如何恶劣,我们仍要努力学习,为了自己的明天而奋斗。(说的好像跟真的一样)
其实这题就是一个递推,现在我们考虑第i个数,定义f[i][j]表示序列里有i个数,逆序对的组数为j的方案数。
因为第i个数的权值就是i,则不管第i个数插到序列里的哪个位置,都会和在它后面的数形成逆序对,因此第i个数插到序列里最多形成i-1个逆序对,最少形成0个。
所以,我们就得到了递推公式:f[i][j]=Σf[i-1][j-k] (j-i+1<=k<=j)
但是现在的时间复杂度仍然是O(n^3)的,n的范围是1000,铁定TLE。
但是看到上面的递推式中有Σ,于是我们就想到了前缀和,降掉一维的复杂度,过掉这道题非常轻松。
另外,由递推式可发现,第i个数的所有逆序对方案数都只跟第i-1个数的逆序对方案数有关,因此可以使用滚动数组来存储,减少内存的使用。
(虽然在这题里并没有什么卵用,在BZOJ上实测出来大概省了80+kb的空间吧……)
注意:本题需要考虑中途答案为负的情况,虽然只要加上p就行了,但是一定要注意考虑,别忘了。
O(n^3)算法(主要是怕自己会忘):
#include <cstdio>
#define p 10000
using namespace std; int n,m,f[][]; int main(void){
scanf("%d%d",&n,&m);
for (int i=; i<=n; ++i) f[i][]=;
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
for (int k=; k<=j&&k<i; ++k)
f[i][j]=(f[i][j]+f[i-][j-k])%p;
printf("%d",f[n][m]);
return ;
}
N^3
O(n^2)算法(AC代码):
#include <cstdio>
#define p 10000
using namespace std; int n,m,f[],c[]; int main(void){
scanf("%d%d",&n,&m);
f[]=;
for (int i=; i<=n; ++i){
for (int j=; j<=m; ++j) c[j]=(c[j-]+f[j])%p;
for (int j=; j<=m; ++j)
if (j>) if (j>=i) f[j]=(c[j]-c[j-i]+p)%p;
else f[j]=c[j];
else f[j]=;
}
printf("%d",f[m]);
return ;
}
AC
附:公式改进法,我在洛谷上看见的。
由上面的那个递推公式可知:f[i][j]=f[i-1][j]+f[i-1][j-1]+…+f[i-1][j-i+1]
又f[i][j-1]=f[i-1][j-1]+f[i-1][j-2]+…+f[i-1][j-i]
所以f[i][j]=f[i-1][j]+f[i][j-1]-f[i-1][j-i]
虽然这个公式的变形在这题中并没有什么特别大的用处,但是这种思想是非常好的,常常可以把一些非常复杂的公式变得简单些,公式的特点也更明显一些。
所以我们还是有必要学习一下这种思想的。
然后就是递推了,其他都和上面的代码差不多的。
#include <cstdio>
#define p 10000
using namespace std; int n,m,f[][]; int main(void){
scanf("%d%d",&n,&m);
f[][]=;
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
if (j>) if (j>=i) f[i%][j]=(f[(i-)%][j]+f[i%][j-]-f[(i-)%][j-i]+p)%p;
else f[i%][j]=(f[(i-)%][j]+f[i%][j-])%p;
else f[i%][j]=(f[(i-)%][j])%p;
printf("%d",f[n%][m]>?f[n%][m]:-);
return ;
}
AC-公式改进法
BZOJ2431_逆序对数列_KEY的更多相关文章
- bzoj2431:[HAOI2009]逆序对数列
单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- 2431: [HAOI2009]逆序对数列
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 954 Solved: 548[Submit][Status ...
- 【BZOJ2431】逆序对数列(动态规划)
[BZOJ2431]逆序对数列(动态规划) 题面 Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组 ...
- P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那 ...
- bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列
http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...
- BZOJ2431 HAOI2009 逆序对数列 【DP】*
BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai,如果有i<j且ai>aja_i>a_jai>aj,那么我们称aia ...
- 洛谷P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易 ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
随机推荐
- 如何删除当前正在使用的SQLLite文件?
从网上搜索一大堆,套路几乎相同,但自己就是不行,怎么也不行,为什么不行呢?不行的话别人肯定不来坑博友了呀.然后放了一会,去拿下午茶回来,再次来看,恍然大悟,What?这么简单. 一开始代码如下: he ...
- JavaScript实现全选和全不选
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...
- chrome开发工具指南(六)
检查和编辑页面与样式 使用 Chrome DevTools 的 Elements 面板检查和实时编辑页面的 HTML 与 CSS. 在 Elements 面板中检查和实时编辑 DOM 树中的任何元素. ...
- Jquery 绑定标签事件
为子元素绑定: $('#foreachResult').delegate('td', 'click', function () { alert($(this).text()); ...
- C# 模拟网站登陆并截图
1.在窗体上加一个按钮,为按钮添加点击事件 private void button1_Click(object sender, EventArgs e) { Bitmap m_Bitmap = Web ...
- javascript this对象
函数运行时,自动生成的一个内部对象,只能在函数内部使用 随着函数使用场合的不同,this的值也发生着改变,但是有一个总原则:this指的是调用函数的那个对象(核心) this对象的指向 一般情况下,我 ...
- Java 多线程(三) 线程的生命周期及优先级
线程的生命周期 线程的生命周期:一个线程从创建到消亡的过程. 如下图,表示线程生命周期中的各个状态: 线程的生命周期可以分为四个状态: 1.创建状态: 当用new操作符创建一个新的线程对象时,该线程处 ...
- Alpha个人总结
一.我的问题: 1.第一章1.2.1 在软件的特殊性中说到,"大型软件有超过数百万行的源代码,上万个不同的文件,而软件工程师通常一次只能看到30-80行源代码,他们的智力.记忆力和常人差不多 ...
- 【集美大学1411_助教博客】团队作业10——项目复审与事后分析(Beta版本)
写在前面的话 软件工程课结束了,大家开心吗?是不是再也不用熬夜写代码了?如果这门课你真的熬夜写代码了,相信你一定有收获,如果这门课结束了你觉得是自己一个全新的开始,那么这门课的意义就实现了.团队作业全 ...
- 201521123096《Java程序设计》第八周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 2. 书面作业 本次作业题集集合 1.List中指定元素的删除(题目4-1) 1.1 实验总结 实验中使用了s ...