一年一度的虐狗节将至,朋友圈各种晒,晒自拍,晒娃,晒美食,秀恩爱的。程序员在晒什么,程序员在加班。但是礼物还是少不了的,送什么好?作为程序员,我准备了一份特别的礼物,用以往发的微博数据打造一颗“爱心”,我想她一定会感动得哭了吧。哈哈

准备工作

有了想法之后就开始行动了,自然最先想到的就是用 Python 了,大体思路就是把微博数据爬下来,数据经过清洗加工后再进行分词处理,处理后的数据交给词云工具,配合科学计算工具和绘图工具制作成图像出来,涉及到的工具包有:

requests 用于网络请求爬取微博数据,结巴分词进行中文分词处理,词云处理库 wordcloud,图片处理库 Pillow,科学计算工具 NumPy ,类似于 MATLAB 的 2D 绘图库 Matplotlib

工具安装

安装这些工具包时,不同系统平台有可能出现不一样的错误,wordcloud,requests,jieba 都可以通过普通的 pip 方式在线安装,

pip install wordcloud
pip install requests
pip install jieba

在Windows 平台安装 Pillow,NumPy,Matplotlib 直接用 pip 在线安装会出现各种问题,推荐的一种方式是在一个叫 Python Extension Packages for Windows 1 的第三方平台下载 相应的 .whl 文件安装。可以根据自己的系统环境选择下载安装 cp27 对应 python2.7,amd64 对应 64 位系统。下载到本地后进行安装

pip install Pillow-4.0.0-cp27-cp27m-win_amd64.whl
pip install scipy-0.18.0-cp27-cp27m-win_amd64.whl
pip install numpy-1.11.3+mkl-cp27-cp27m-win_amd64.whl
pip install matplotlib-1.5.3-cp27-cp27m-win_amd64.whl

其他平台可根据错误提示 Google 解决。或者直接基于 Anaconda 开发,它是 Python 的一个分支,内置了大量科学计算、机器学习的模块 。

获取数据

新浪微博官方提供的 API 是个渣渣,只能获取用户最新发布的5条数据,退而求其次,使用爬虫去抓取数据,抓取前先评估难度,看看是否有人写好了,在GitHub逛了一圈,基本没有满足需求的。倒是给我提供了一些思路,于是决定自己写爬虫。使用 http://m.weibo.cn/ 移动端网址去爬取数据。发现接口 http://m.weibo.cn/index/my?format=cards&page=1 可以分页获取微博数据,而且返回的数据是 json 格式,这样就省事很多了,不过该接口需要登录后的 cookies 信息,登录自己的帐号就可以通过 Chrome 浏览器 找到 Cookies 信息。

实现代码:

def fetch_weibo():
api = "http://m.weibo.cn/index/my?format=cards&page=%s"
for i in range(1, 102):
response = requests.get(url=api % i, cookies=cookies)
data = response.json()[0]
groups = data.get("card_group") or []
for group in groups:
text = group.get("mblog").get("text")
text = text.encode("utf-8")
text = cleanring(text).strip()
yield text

查看微博的总页数是101,考虑到一次性返回一个列表对象太费内存,函数用 yield 返回一个生成器,此外还要对文本进行数据清洗,例如去除标点符号,HTML 标签,“转发微博”这样的字样。

保存数据

数据获取之后,我们要把它离线保存起来,方便下次重复使用,避免重复地去爬取。使用 csv 格式保存到 weibo.csv 文件中,以便下一步使用。数据保存到 csv 文件中打开的时候可能为乱码,没关系,用 notepad++查看不是乱码。

def write_csv(texts):
with codecs.open('weibo.csv', 'w') as f:
writer = csv.DictWriter(f, fieldnames=["text"])
writer.writeheader()
for text in texts:
writer.writerow({"text": text}) def read_csv():
with codecs.open('weibo.csv', 'r') as f:
reader = csv.DictReader(f)
for row in reader:
yield row['text']

分词处理

从 weibo.csv 文件中读出来的每一条微博进行分词处理后再交给 wordcloud 生成词云。结巴分词适用于大部分中文使用场景,使用停止词库 stopwords.txt 把无用的信息(比如:的,那么,因为等)过滤掉。

def word_segment(texts):
jieba.analyse.set_stop_words("stopwords.txt")
for text in texts:
tags = jieba.analyse.extract_tags(text, topK=20)
yield " ".join(tags)

生成图片

数据分词处理后,就可以给 wordcloud 处理了,wordcloud 根据数据里面的各个词出现的频率、权重按比列显示关键字的字体大小。生成方形的图像,如图:

是的,生成的图片毫无美感,毕竟是要送人的也要拿得出手才好炫耀对吧,那么我们找一张富有艺术感的图片作为模版,临摹出一张漂亮的图出来。我在网上搜到一张“心”型图:

生成图片代码:

def generate_img(texts):
data = " ".join(text for text in texts)
mask_img = imread('./heart-mask.jpg', flatten=True)
wordcloud = WordCloud(
font_path='msyh.ttc',
background_color='white',
mask=mask_img
).generate(data)
plt.imshow(wordcloud)
plt.axis('off')
plt.savefig('./heart.jpg', dpi=600)

需要注意的是处理时,需要给 matplotlib 指定中文字体,否则会显示乱码,找到字体文件夹:C:\Windows\Fonts\Microsoft YaHei UI复制该字体,拷贝到 matplotlib 安装目录:C:\Python27\Lib\site-packages\matplotlib\mpl-data\fonts\ttf 下

差不多就这样。

当我自豪地把这张图发给她的时候,出现了这样的对话:

这是什么?
我:爱心啊,亲手做的
这么专业,好感动啊,你的眼里只有 python ,没有我 (哭笑)
我:明明是“心”中有 python 啊

利用python基于微博数据打造一颗“心”的更多相关文章

  1. 基于微博数据用 Python 打造一颗“心”

    一年一度的虐狗节刚过去不久,朋友圈各种晒,晒自拍,晒娃,晒美食,秀恩爱的.程序员在晒什么,程序员在加班.但是礼物还是少不了的,送什么好?作为程序员,我准备了一份特别的礼物,用以往发的微博数据打造一颗“ ...

  2. 利用python将excel数据解析成json格式

    利用python将excel数据解析成json格式 转成json方便项目中用post请求推送数据自定义数据,也方便测试: import xlrdimport jsonimport requests d ...

  3. 利用Python读取外部数据文件

      不论是数据分析,数据可视化,还是数据挖掘,一切的一切全都是以数据作为最基础的元素.利用Python进行数据分析,同样最重要的一步就是如何将数据导入到Python中,然后才可以实现后面的数据分析.数 ...

  4. Python系列之——利用Python实现微博监控

    0x00 前言: 前几个星期在写一个微博监控系统 可谓是一波三折啊 获取到微博后因为一些字符编码问题 导致心态爆炸开发中断 但是就在昨天发现了另外一个微博的接口 一个手机微博的接口https://m. ...

  5. 利用Python进行数据分析——数据规整化:清理、转换、合并、重塑(七)(1)

    数据分析和建模方面的大量编程工作都是用在数据准备上的:载入.清理.转换以及重塑.有时候,存放在文件或数据库中的数据并不能满足你的数据处理应用的要求.很多人都选择使用通用编程语言(如Python.Per ...

  6. 利用python将excel数据导入mySQL

    主要用到的库有xlrd和pymysql, 注意pymysql不支持python3 篇幅有限,只针对主要操作进行说明 连接数据库 首先pymysql需要连接数据库,我这里连接的是本地数据库(数据库叫ld ...

  7. 利用Python读取json数据并求数据平均值

    要做的事情:一共十二个月的json数据(即12个json文件),json数据的一个单元如下所示.读取这些数据,并求取各个(100多个)城市年.季度平均值. { "time_point&quo ...

  8. 【原创】python基于大数据现实双色球预测

    前提准备:利用sql筛选出每个球出现概率最高的前5个数 原理:先爬出所有的历史数据,然后模拟摇奖机出球的机制并大量模拟计算,直到出现列表中的某一个数后即停 注意事项:由于计算过程数据量很大,需要加入内 ...

  9. 一例tornado框架下利用python panda对数据进行crud操作

    get提交部分 <script> /* $("#postbtn").click(function () { $.ajax({ url:'/loaddata', data ...

随机推荐

  1. Angular2 Service实践

    引言: 如果说组件系统(Component)是ng2应用的躯体,那把服务(Service)认为是流通于组件之间并为其带来生机的血液再合适不过了.组件间通信的其中一种优等选择就是使用服务,在ng1里就有 ...

  2. TCP/IP中你不得不知的十大秘密

    这段时间 有一点心很浮躁,不过希望自己马上要矫正过来.好好学习编程!这段时间我想好好地研究一下TCP/IP协议和网络传输这块!加油 一.TCP/IP模型 TCP/IP协议模型(Transmission ...

  3. 如何用kaldi做孤立词识别-初版

    ---------------------------------------------------------------------------------------------------- ...

  4. SYSTEM_INFO

    SYSTEM_INFO结构体包含了当前计算机的信息.这个信息包括计算机的体系结构.中央处理器的类型.系统中中央处理器的数量.页面的大小以及其他信息. SYSTEM_INFO,Win32 API函数Ge ...

  5. vue实例讲解之vuex的使用

    vuex是一个状态管理插件,本文通过一个简单的实例来讲解一下,vuex的使用. 先看一张官方的图: 这个图新手一看估计是蒙的,简单解释一下,这个图表示的就是vue通过Action Mutations ...

  6. Spring Framework 5.0 新特性

    Spring Framework 5.0是在Spring Framework 4.0之后将近四年内一次重大的升级. 在这个时间框架内,主要的发展之一就是Spring Boot项目的演变. Spring ...

  7. SpringMVC的一点理解

    1.MVC(Model-View-Controller) 用慕课网上的一个图来看看MVC Front Controller(前端控制器):把客户的请求分发给不同的控制器去生成业务数据,将生成的业务数据 ...

  8. Zabbix(一) : 简介以及Server端安装

    一.什么是Zabbix? zabbix由AlexeiVladishev首先开发,目前在维护的是Zabbix SIA.ZABBIX是一个企业级的开源分布式监控解决方案. zabbix为监控网络和服务器的 ...

  9. WPF 验证没有通过无法保存数据(非常好)+ 虚似数据库

    Validation control with a single validation rule is easy, but what if we need to validate a control ...

  10. 关于KVO导读

    入门篇 KVO是什么? Key-value observing is a mechanism that allows objects to be notified of changes to spec ...