照例先贴题面(汪汪汪)

2500: 幸福的道路

Time Limit: 20 Sec  Memory Limit: 256 MB
Submit: 368  Solved: 145
[Submit][Status][Discuss]

Description

小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光.
他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图.
他们不愿枯燥的每天从同一个地方开始他们的锻炼,所以他们准备给起点标号后顺序地从每个起点开始(第一天从起点一开始,第二天从起点二开始……). 而且他们给每条道路定上一个幸福的值.很显然他们每次出发都想走幸福值和最长的路线(即从起点到树上的某一点路径中最长的一条).
他们不愿再经历之前的大起大落,所以决定连续几天的幸福值波动不能超过M(即一段连续的区间并且区间的最大值最小值之差不超过M).他们想知道要是这样的话他们最多能连续锻炼多少天(hint:不一定从第一天一直开始连续锻炼)?
现在,他们把这个艰巨的任务交给你了!

Input

第一行包含两个整数N, M(M<=10^9).
第二至第N行,每行两个数字Fi , Di, 第i行表示第i个节点的父亲是Fi,且道路的幸福值是Di.

Output

最长的连续锻炼天数

Sample Input

3 2
1 1
1 3

Sample Output

3
数据范围:
50%的数据N<=1000
80%的数据N<=100 000
100%的数据N<=1000 000
对于这道题来说我们可以考虑预处理出每个结点的最长路径长然后乱搞
对于预处理我在考场上写了个对于每个结点DFS一遍求最长,然后$std::set$维护最大最小值,总时间复杂度瓶颈为预处理$O(n^2)$
实际上我们可以先求这个树的直径结点,然后从分别从两个直径结点进行DFS并取最大值来预处理出最长路径长。直径为树中最长的一条路径。这一过程需要固定的4遍DFS所以时间复杂度$O(n)$
考场上鬼使神差地脑抽认为求直径会有反例
然后就是求最长连续区间的问题,我的策略是建立左右两个哨兵,采用一直让右哨兵前进并更新最大值直至最大最小值超过限制条件,超限之后采用不断删除左哨兵的值并前进直至符合条件的贪心策略。因为$std::set$的插入与查询是$O(logn)$,每个点肯定要插入/删除一次所以贪心过程时间复杂度$O(nlogn)$,总时间复杂度$O(nlogn)$
这里其实还可以使用单调队列,但是因为单调队列要固定区间长度所以只能采取二分长度策略,总时间复杂度也是$O(nlogn)$。
然后袋马时间:
 #include <set>
#include <cstdio>
#include <algorithm> const int MAXE=;
const int MAXV=; struct Edge{
int from;
int to;
int dis;
Edge* next;
};
Edge E[MAXE];
Edge* head[MAXV];
Edge* top=E; int n;
int m;
int lg1;
int lg2;
int dis[MAXV]; void Initialize();
std::pair<int,int> DFS(int,int,int);
void DFSA(int,int,int);
void Insert(int,int,int);
int Sweep(); int main(){
Initialize();
lg1=DFS(,,).second;
lg2=DFS(lg1,,).second;
DFSA(lg1,,);
DFSA(lg2,,);
printf("%d\n",Sweep());
// printf("%d %d\n",lg1,lg2);
return ;
} std::pair<int,int> DFS(int root,int prt,int dis){
std::pair<int,int> ans(dis,root);
for(Edge* i=head[root];i!=NULL;i=i->next){
if(i->to==prt)
continue;
ans=std::max(ans,DFS(i->to,root,dis+i->dis));
}
return ans;
} void DFSA(int root,int prt,int dis){
::dis[root]=std::max(::dis[root],dis);
for(Edge* i=head[root];i!=NULL;i=i->next){
if(i->to==prt)
continue;
DFSA(i->to,root,dis+i->dis);
}
} int Sweep(){
int l=,r=,ans=;
// std::priority_queue<int,std::vector<int>,std::less<int>> qmax;
// std::priority_queue<int,std::vector<int>,std::greater<int>> qmin;
std::multiset<int> s;
while(r<=n){
// printf("%d\n",r);
s.insert(dis[r]);
while(*(--s.end())-*s.begin()>m){
s.erase(s.find(dis[l]));
++l;
}
ans=std::max(ans,int(s.size()));
++r;
}
return ans;
} void Initialize(){
int a,b;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%d%d",&a,&b);
Insert(a,i,b);
Insert(i,a,b);
}
} inline void Insert(int from,int to,int dis){
top->to=to;
top->dis=dis;
top->from=from;
top->next=head[from];
head[from]=top;
top++;
}

Backup

以及图包时间

[BZOJ 2500] 幸福的道路的更多相关文章

  1. [BZOJ 2500]幸福的道路 树形dp+单调队列+二分答案

    考试的时候打了个树链剖分,而且还审错题了,以为是每天找所有点的最长路,原来是每天起点的树上最长路径再搞事情.. 先用dfs处理出来每个节点以他为根的子树的最长链和次长链.(后面会用到) 然后用类似dp ...

  2. ●BZOJ 2500 幸福的道路

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2500 题解: DFS,单调队列 首先有一个结论,距离树上某一个点最远的点一定是树的直径的一个 ...

  3. bzoj 2500 幸福的道路 树上直径+set

    首先明确:树上任意一点的最长路径一定是直径的某一端点. 所以先找出直径,求出最长路径,然后再求波动值<=m的最长区间 #include<cstdio> #include<cst ...

  4. BZOJ 2500 幸福的道路(race) 树上直径+平衡树

    structHeal { priority_queue<int> real; priority_queue<int> stack; void push(int x){ real ...

  5. 【BZOJ】【2500】幸福的道路

    树形DP+单调队列优化DP 好题(也是神题……玛雅我实在是太弱了TAT,真是一个250) 完全是抄的zyf的……orz我还是退OI保平安吧 第一步对于每一天求出一个从第 i 个点出发走出去的最长链的长 ...

  6. BZOJ2500: 幸福的道路

    题解: 一道不错的题目. 树DP可以求出从每个点出发的最长链,复杂度O(n) 然后就变成找一个数列里最长的连续区间使得最大值-最小值<=m了. 成了这题:http://www.cnblogs.c ...

  7. bzoj2500幸福的道路 树形dp+单调队列

    2500: 幸福的道路 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 434  Solved: 170[Submit][Status][Discuss ...

  8. [Bzoj2500]幸福的道路(树上最远点)

    2500: 幸福的道路 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 474  Solved: 194[Submit][Status][Discuss ...

  9. 【BZOJ2500】幸福的道路 树形DP+RMQ+双指针法

    [BZOJ2500]幸福的道路 Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的 ...

随机推荐

  1. java加密算法入门(三)-非对称加密详解

    1.简单介绍 这几天一直在看非对称的加密,相比之前的两篇内容,这次看了两倍多的时间还云里雾里的,所以这篇文章相对之前的两篇,概念性的东西多了些,另外是代码的每一步我都做了介绍,方便自己以后翻阅,也方便 ...

  2. mysql 发生系统错误 1067

    最近要搞一个免安装版的mysql,原来的配置在d盘的my.ini如下 [client]port=3306default-character-set=utf8 [mysqld]port=3306char ...

  3. android网页分享到朋友圈问题求助?

    目前想要实现通过QQ将网页分享到微信好友或朋友圈,看见有些APP是直接分享出去左下角图标显示的是QQ.求助各位大牛提供下思路. 这种功能是怎么实现的.应该不是通过android的系统分享实现的吧?.查 ...

  4. Swift App项目总结

    最近公司新开了一个项目,由于我的同事的离职,所以就剩我自己了.于是就果断的使用纯纯Swift写了,之前也用过Swift,不过很早了,那时候Swift还不稳定,每次一升级Xcode,Swift升级以后语 ...

  5. Java学习笔记--监视目录变化

    1.在实际开发中可能会需要监视某个目录下的文件所发生的变化.   2.在java7之前的做法 在一个独立的线程中使用File类的listFiles方法来定时检查目录中的内容,并与之前的内容进行比较   ...

  6. 技术分析 | 新型勒索病毒Petya如何对你的文件进行加密

    6月27日晚间,一波大规模勒索蠕虫病毒攻击重新席卷全球. 媒体报道,欧洲.俄罗斯等多国政府.银行.电力系统.通讯系统.企业以及机场都不同程度的受到了影响. 阿里云安全团队第一时间拿到病毒样本,并进行了 ...

  7. sqlserver 复制表结构(可以含有数据 或 只要表结构)

    sqlserver 复制表结构(可以含有数据 或 只要表结构) SELECT * INTO bb FROM aa(NOLOCK) WHERE 1=0

  8. MySQL加密和解密案例

    define("ENCRYPT",'2998a15c0cd853edad7');//密钥key 被存储的数据库的字段设置成blob格式(二进制) //AES_ENCRYPT 加密 ...

  9. Charles抓包工具安装与配置

    在实际开发中,我们需要时常抓取线上的请求及数据,甚至是请求的html文档,js,css等静态文件来进行调试.在这里,我使用charles来进行以上操作.但是呢,charles需要进行一系列配置才能达到 ...

  10. VB6之SOAP

    根据网上搜来的资料,MS有个组件可以用来支撑VB6访问SOAP接口. 于是下载了个msSoapToolkit.exe安装后试了下,发现确实可以访问用C#或者VB.net写的webservice. 但是 ...