Description

 

Input

第一行有三个整数N,M,p,分别代表序列的长度、平方操作与询问操作的总次数以及在平方操作中所要模的数。

 
接下来一行N个数代表一开始的序列{X1,X2,...,XN}。
 
接下来M行,每行三个整数op,l,r。其中op代表本次操作的类型。若op=0,代表这是一次平方操作,平方的区间为[l,r];如果op=1,代表这是一次询问操作,询问的区间为[l,r]。
 

Output

对于每次的询问操作,输出一行代表这段区间内数的总和。注意:答案没有对任何数取模。

 

Sample Input

3 3 11
1 2 3
1 1 3
0 1 3
1 1 3

Sample Output

6
14

HINT

对于100%的数据,∀i,Xi∈[0,p),l,r∈[1,n]

N,M,p的范围如下:
 
编号  N  M  p
1  1000  1000  233
2  1000  1000  2332
3  100000  100000  5
4  100000  100000  8192
5  100000  100000  23
6  100000  100000  45
7  100000  100000  37
8  55000  55000  4185
9  55000  55000  5850
10  55000  55000  2975
11  55000  55000  2542
12  55000  55000  2015
13  60000  60000  2003
14  65000  65000  2010
15  70000  70000  4593
16  75000  75000  4562
17  80000  80000  1034
18  85000  85000  5831
19  90000  90000  9905
20  100000  100000  9977
 
膜了一大把题解
线段树是肯定的……
平方是会出现循环节的(听说会很短
预处理出所有环,和指向环的链,由于没有其他修改操作,这里面的数字肯定是越修改越往环跑,进了环就处理出跑k次后答案是多少,不在环上就暴力改……
论权限号的重要性
/**************************************************************
Problem: 4105
User: JSZX11556
Language: C++
Result: Accepted
Time:25216 ms
Memory:275236 kb
****************************************************************/ #include<cstdio>
#include<algorithm>
#define lp (p<<1)
#define rp ((p<<1)|1)
using namespace std; int read_p,read_ca;
inline int read(){
read_p=;read_ca=getchar();
while(read_ca<''||read_ca>'') read_ca=getchar();
while(read_ca>=''&&read_ca<='') read_p=read_p*+read_ca-,read_ca=getchar();
return read_p;
}
int n,m,p,a[],ne[],i;
bool v[],f[];
struct na{
int l,r,w,le,c,b[],pos;
bool v;
}t[];
inline int gcd(int x,int y){return y==?x:gcd(y,x%y);}
inline int lcm(int x,int y){return x*y/gcd(x,y);}
inline void updata(int p){
if (t[p].l==t[p].r) return;
t[p].w=t[lp].w+t[rp].w;
t[p].v=t[lp].v&t[rp].v;
if (t[p].v){
t[p].pos=;
t[p].le=lcm(t[lp].le,t[rp].le);
for (i=;i<t[p].le;i++) t[p].b[i]=t[lp].b[(i+t[lp].pos)%t[lp].le]+t[rp].b[(i+t[rp].pos)%t[rp].le];
}
}
inline void build(int p,int l,int r){
t[p].l=l;t[p].r=r;
if (l==r){
t[p].w=a[l];t[p].v=f[t[p].w];
if (t[p].v) for (t[p].b[]=t[p].w,t[p].le=,i=ne[t[p].w];i!=t[p].w;i=ne[i]) t[p].b[t[p].le++]=i;
return;
}
int mid=l+r>>;
build(lp,l,mid);build(rp,mid+,r);
updata(p);
}
inline void hb(int p,int c){
if (!t[p].v){
for (i=;i<=c;i++) t[p].w=ne[t[p].w];t[p].v=f[t[p].w];
if (t[p].v) for (t[p].b[]=t[p].w,t[p].le=,i=ne[t[p].w];i!=t[p].w;i=ne[i]) t[p].b[t[p].le++]=i;
return;
}
c%=t[p].le;
t[p].c+=c;if (t[p].c>=t[p].le) t[p].c-=t[p].le;
t[p].pos+=c;if (t[p].pos>=t[p].le) t[p].pos-=t[p].le;
t[p].w=t[p].b[t[p].pos];
}
inline void pd(int p){
if (t[p].c){
if (t[p].l!=t[p].r) hb(lp,t[p].c),hb(rp,t[p].c);
t[p].c=;
updata(p);
}
}
inline void ch(int p,int l,int r){
if (t[p].l==l&&t[p].r==r&&t[p].v) return hb(p,);
pd(p);
if (t[p].l==t[p].r){
t[p].w=ne[t[p].w];t[p].v=f[t[p].w];
if (t[p].v) for (t[p].b[]=t[p].w,t[p].le=,i=ne[t[p].w];i!=t[p].w;i=ne[i]) t[p].b[t[p].le++]=i;
return;
}
int mid=t[p].l+t[p].r>>;
if (r<=mid) ch(lp,l,r);else
if (l>mid) ch(rp,l,r);else
ch(lp,l,mid),ch(rp,mid+,r);
updata(p);
}
inline int MMH(int p,int l,int r){
pd(p);
if (t[p].l==l&&t[p].r==r) return t[p].w;
int mid=t[p].l+t[p].r>>;
if (r<=mid) return MMH(lp,l,r);else
if (l>mid) return MMH(rp,l,r);else
return MMH(lp,l,mid)+MMH(rp,mid+,r);
}
int main(){
register int i,j,T,l,r;
n=read();m=read();
p=read();
for (i=;i<=n;i++) a[i]=read();
for (i=;i<p;i++) ne[i]=i*i%p,f[i]=;
for (i=;i<p;i++)
if (!v[i]){
for (j=i;!v[j];j=ne[j]) v[j]=;
for (T=i;T!=j;T=ne[T]) f[T]=;
}
build(,,n);
for (i=;i<=m;i++){
T=read();l=read();r=read();
if (T)printf("%d\n",MMH(,l,r));else ch(,l,r);
}
}

bzoj:4105: [Thu Summer Camp 2015]平方运算的更多相关文章

  1. 4105: [Thu Summer Camp 2015]平方运算

    首先嘛这道题目只要知道一个东西就很容易了:所有循环的最小公约数<=60,成一条链的长度最大为11,那么我们就可以用一个很裸的方法.对于在链上的数,我们修改直接暴力找出并修改.对于在环上的数,我们 ...

  2. 2018.10.18 bzoj4105: [Thu Summer Camp 2015]平方运算(线段树)

    传送门 线段树妙题. 显然平方几次就会循环(打表证明不解释). 然后所有环长度的lcmlcmlcm不大于70. 因此维护一下当前区间中的节点是否全部在环上. 不是直接暴力到叶子节点修改. 否则整体打标 ...

  3. BZOJ4105 [Thu Summer Camp 2015]平方运算 【线段树】

    题目链接 BZOJ4105 题解 平方操作orz,虽说应该是线段树,但是不会维护啊QAQ 小瞧一眼题解... 平方成环?环长\(lcm\)小于\(60\)? 果然还是打表找规律题.... 那就很好做了 ...

  4. bzoj 4104 [Thu Summer Camp 2015]解密运算——思路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4104 想了很久,想出一个 nlogn (也许是 n2logn )的,可惜空间是 n2 . 已 ...

  5. bzoj4105: [Thu Summer Camp 2015]平方运算

    填坑 我不知道怎么算的,但是所有环的LCM数不会超过60 然后用线段树维护这个东西,每个节点记录子树内的循环节 没到循环节的暴力枚举 复杂度是nlogn再乘以循环节长度 #include<cst ...

  6. 【BZOJ 4104】 4104: [Thu Summer Camp 2015]解密运算 (智商)

    4104: [Thu Summer Camp 2015]解密运算 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 370  Solved: 237 De ...

  7. [Thu Summer Camp 2015]解密运算

    4104: [Thu Summer Camp 2015]解密运算 Time Limit: 10 Sec  Memory Limit: 512 MB Description 对于一个长度为N的字符串,我 ...

  8. [BZOJ 4103] [Thu Summer Camp 2015] 异或运算 【可持久化Trie】

    题目链接:BZOJ - 4103 题目分析 THUSC滚粗之后一直没有写这道题,从来没写过可持久化Trie,发现其实和可持久化线段树都是一样的.嗯,有些东西就是明白得太晚. 首先Orz ZYF-ZYF ...

  9. BZOJ 4103: [Thu Summer Camp 2015]异或运算 可持久化trie

    开始想了一个二分+可持久化trie验证,比正解多一个 log 仔细思考,你发现你可以直接按位枚举,然后在可持久化 trie 上二分就好了. code: #include <bits/stdc++ ...

随机推荐

  1. 【CSS3】字体font

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  2. epoll的使用实例

    在网络编程中通常需要处理很多个连接,可以用select和poll来处理多个连接.但是select都受进程能打开的最大文件描述符个数的限制.并且select和poll效率会随着监听fd的数目增多而下降. ...

  3. 正则表达式 cheat sheet

  4. 程序员的自我救赎---10.1:APP版本控制系统

    <前言> (一) Winner2.0 框架基础分析 (二)PLSQL报表系统 (三)SSO单点登录 (四) 短信中心与消息中心 (五)钱包系统 (六)GPU支付中心 (七)权限系统 (八) ...

  5. ecshop 属性表(attribute)商品属性表(goods_attr)货品表(prduct) 商品数量的联系

    ecshop 属性表(attribute)商品属性表(goods_attr)货品表(prduct) 商品数量的联系 一个商城的商品属性存放在属性表(attribute)里 ,每个商品对应的属性在goo ...

  6. find + xargs + cp 遇到文件名中带空格如何处理

    一,需求为查询文件名为ZRSH开头的时间为7月至今的所有文件并打包 1.首先想到的就是find + xargs + cp  格式.. find 2016073* -type f  -name *ZRS ...

  7. KD树

    k-d树 在计算机科学里,k-d树( k-维树的缩写)是在k维欧几里德空间组织点的数据结构.k-d树可以使用在多种应用场合,如多维键值搜索(例:范围搜寻及最邻近搜索).k-d树是空间二分树(Binar ...

  8. Zabbix 单位换算

    直接举一例子,然后再举一反三: 如图: 单位B 则基数为1024(倍数) 我性能参数为KB单位,我们则把单位转换成和我们计数器 保持一致的单位即可,一致后,zabbix 后面会自己准换成自己想要的显示 ...

  9. C# 的基本数据类型

    bool System.Boolean 4Byte 32bit布尔型变量 逻辑值,true或者false,默认值为false byte System.Byte 1Byte 8bit无符号整数无符号的字 ...

  10. SQL Server-聚焦WHERE Column=@Param OR @Param IS NULL有问题?

    前言 上一篇我们讲完SQL动态查询,本节我们继续来讲解SQL动态查询中存在的问题. SQL动态查询条件筛选过滤 当我们创建存储过程调用存储过程时,若筛选条件有值则过滤,没有值则返回所行记录,类似如下查 ...