转载自:增广拉格朗日乘子法(Augmented Lagrange Method)

增广拉格朗日乘子法的作用是用来解决等式约束下的优化问题,

假定需要求解的问题如下:

    minimize   f(X)

    s.t.:     h(X)=0

其中,f:Rn->R; h:Rn->Rm

朴素拉格朗日乘子法的解决方案是:

    L(X,λ)=f(X)+μh(X);  μ:Rm

    此时,求解L对X和μ的偏导同时为零就可以得到最优解了。

增广拉格朗日乘子法的解决方案是:

    Lc(x,λ)=f(X)+μh(X)+1/2c|h(X)|2

    每次求出一个xi,然后按照梯度更新参数μ,c每次迭代逐渐增大(使用ALM方法好像还有一些假设条件)

    整个流程只需要几步就可以完成了,一直迭代就可得到最优解了。

    

参考文献:

  [1]Multiplier and Gradient Methods,1969

  [2]constrained optimization and lagrange multiplier methods(page 104),1982

wiki:https://en.wikipedia.org/wiki/Augmented_Lagrangian_method

Let us say we are solving the following constrained problem:

subject to

This problem can be solved as a series of unconstrained minimization problems. For reference, we first list the penalty method approach:

The penalty method solves this problem, then at the next iteration it re-solves the problem using a larger value of  (and using the old solution as the initial guess or "warm-start").

The augmented Lagrangian method uses the following unconstrained objective:

and after each iteration, in addition to updating, the variable  is also updated according to the rule

where  is the solution to the unconstrained problem at the kth step, i.e. 

The variable  is an estimate of the Lagrange multiplier, and the accuracy of this estimate improves at every step. The major advantage of the method is that unlike the penalty method, it is not necessary to take  in order to solve the original constrained problem. Instead, because of the presence of the Lagrange multiplier term,  can stay much smaller.

The method can be extended to handle inequality constraints. For a discussion of practical improvements, see.[4]

增广拉格朗日乘子法(Augmented Lagrange Method)的更多相关文章

  1. 对偶上升法到增广拉格朗日乘子法到ADMM

    对偶上升法 增广拉格朗日乘子法 ADMM 交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)是一种解决可分解凸优化问题的简单方法,尤其在 ...

  2. 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...

  3. 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    [整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...

  4. 装载:深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  5. Machine Learning系列--深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  6. 【机器学习】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  7. 拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    参考文献:https://www.cnblogs.com/sddai/p/5728195.html 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush ...

  8. 拉格朗日乘子法(Lagrange Multiplier)和KKT条件

    拉格朗日乘子法:对于等式约束的优化问题,求取最优值. KKT条件:对于含有不等式约束的优化问题,求取最优值. 最优化问题分类: (1)无约束优化问题: 常常使用Fermat定理,即求取的导数,然后令其 ...

  9. 拉格朗日乘子法&KKT条件

    朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件.前 ...

随机推荐

  1. 【转】Java方向如何准备BAT技术面试答案(汇总版)

    原文地址:http://www.jianshu.com/p/1f1d3193d9e3 这个主题的内容之前分三个篇幅分享过,导致网络上传播的比较分散,所以本篇做了一个汇总,同时对部分内容及答案做了修改, ...

  2. 在web项目启动时,使用监听器来执行某个方法

    在web项目中有很多时候需要在项目启动时就执行一些方法,而且只需要执行一次,比如:加载解析自定义的配置文件.初始化数据库信息等等,在项目启动时就直接执行一些方法,可以减少很多繁琐的操作. 这里写了个简 ...

  3. 简单RPC框架-基于Consul的服务注册与发现

    *:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* ...

  4. java虚拟机学习-JVM内存管理:深入垃圾收集器与内存分配策略(4)

    Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来. 概述: 说起垃圾收集(Garbage Collection,下文简称GC),大部分人都把这项 ...

  5. $.when()方法翻译

    地址:http://api.jquery.com/jQuery.when/ jQuery.when( deferreds ),returns Promise 正文 Description: Provi ...

  6. 一天搞定CSS:定位position--17

    1.定位取值概览 2.相对定位relative <!DOCTYPE html> <html> <head> <meta charset="UTF-8 ...

  7. jQuery链式操作如何返回上一级DOM

    有时候我们在链式操作的时候,选择到了其他的DOM进行操作,如何再返回先前的dom呢,有一下几个方法,end(); addBack(); add(); 使用形式 $("#divFather&q ...

  8. MySql俩种分页区别(注意)

    注意俩个分页的区别哦~ SELECT * FROM city LIMIT 2 OFFSET 1; 从第二条记录开始 取二条记录 如下: SELECT * FROM city LIMIT 3,2; 从第 ...

  9. 百度导航试用 vs 高德导航

    听说百度导航免费了,下载试用了一下: HUD模式不错,但是需要一个手机支架或挂钩.尤其是HUD景象模式,夜间把手机平放,通过前挡风玻璃反射看.这个功能有点乔布斯的感觉了. 不过路径规划还差一点,和凯立 ...

  10. 【论文:麦克风阵列增强】An alternative approach to linearly constrained adaptive beamforming

    作者:桂. 时间:2017-06-03  21:46:59 链接:http://www.cnblogs.com/xingshansi/p/6937259.html 原文下载:http://pan.ba ...