记一次使用快速幂与Miller-Rabin的大素数生成算法
大家都知道RSA的加密的安全性就是能够找到一个合适的大素数,而现在判断大素数的办法有许多,比如Fermat素性测试或者Miller-Rabin素性测试,而这里我用了Miller-Rabin素性测试的算法,具体的理论我写到下面。
算法的理论基础:
- Fermat定理:若n是奇素数,a是任意正整数(1≤ a≤ n−1),则 a^(n-1) ≡ 1 mod n。
2. 如果n是一个奇素数,将n−1表示成2^s*r的形式,r是奇数,a与n是互素的任何随机整数,那么a^r ≡ 1 mod n或者对某个j (0 ≤ j≤ s−1, j∈Z) 等式a^(2jr) ≡ −1 mod n 成立。
实验需要根据这个算法的理论来实现对素数的判定功能,而我将上述理论用C++的 形式写了出来,然后在一些细节的算法上少做润色,成功实现了对素数的生成和判定。
一、实验代码:
#include<iostream>
#include<cmath>
#include<ctime>
#include<cstdlib>
using namespace std;
typedef unsigned long long ll;
long long q_mul( long long a, long long b, long long mod )
{
long long ans = 0;
while(b)
{
if(b & 1)
{
b--;
ans =(ans+ a)%mod;
}
b /= 2;
a = (a + a) % mod;
}
return ans;
}
long long q_pow( long long a, long long b, long long mod )
{
long long ans = 1;
while(b)
{
if(b & 1)
{
ans = q_mul( ans, a, mod );
}
b /= 2;
a = q_mul( a, a, mod );
}
return ans;
}
//long long q_pow(ll a,ll b,ll mod){
// ll base=a;
// ll ans = 1;
// while(b!=0){
// if(b&1) ans = (ans*base)%mod;
// base = (base*base)%mod;
// b>>=1;
// }
// return ans;
//}
int Miller_Rabin(ll n) {
if(n<2) return 0;
if(n==2) return 1;
ll k=0,q=n-1;
while(q%2==0){
q=q/2;
k++;
}
ll a = rand(); //要保证a在(1,n-1)之间,开区间
a=(a%(n-2))+2;
ll result1 = q_pow(a,q,n);
if(result1 == 1||result1 == n-1){
return 1;
}
while(k--){
result1 = q_mul(result1,2,n);
if(result1 == n-1) return 1;
}
return 0;
}
bool True_Miller_Rabin(ll n){
int times = 10;
while(times){
times--;
if(Miller_Rabin(n)==0) return false;
}
return true;
}
int main()
{
srand((unsigned)time(NULL));
ll num;
// while(1){
// cin>>num;
// if(Miller_Rabin(num)==1)
// cout<<"为素数"<<endl;
// else{
// cout<<"是合数"<<endl;
// }
// }
for(ll i=1000000;i<=1005000;i++){
int a =0;
if(True_Miller_Rabin(i)){
cout<< i<<"是素数"<<endl;
}
}
return 0;
}
二、实验结果(自行测试)
这是对1000000000000000000到1000000000000005000里所有素数判定的结果
这是对输入素数的判读
以上结果说明,该程序完全能够胜任在long long类型范围下的素数判定任务。
三、实验总结
本次实验采用了Miller-Rabin算法,而在理解算法的基础上我们要灵活运用。在算法中我最开始用到了C++函数里面的pow函数,然而这个函数导致我素数输出不完整,经过很久的调试,我发现是C++自带库里面的数据类型与long long类型有出入,所以我放弃了使用自带的函数库。之后,我选择了快速幂算法。这个算法比pow函数效果更好,能够对大数进行快速的幂计算。然而在快速幂计算的过程中设计到两个数相乘,当两个Long 类型的数据相乘时会溢出从而导致计算的大素数长度有限。于是我有考虑将幂计算里面的乘法分成若干个加法去进行运算,于是我采用了快速乘与快速幂想结合的方式,也就是我上述代码中绿色的部分(蓝色部分为单纯快速幂),由此我讲幂运算的速度有提升了一个档次,在此基础上也增大了计算素数的范围。
——————Made By Pinging、、、、、hhh Welcome to CUMT。。。
记一次使用快速幂与Miller-Rabin的大素数生成算法的更多相关文章
- TZOJ 5291 游戏之合成(快速幂快速乘)
描述 zzx和city在玩一款小游戏的时候,游戏中有一个宝石合成的功能,需要m个宝石才可以合成下一级的宝石(例如需要m个1级宝石才能合成2级宝石). 这时候zzx问city说“我要合成A级宝石需要多少 ...
- 二分求幂/快速幂取模运算——root(N,k)
二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...
- 递归实现快速幂(C++版)
快速幂是什么? 顾名思义,快速幂就是快速算底数的n次幂.其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高. 就以a的b次方来介绍: 把b转换成二进制数,该二进制数第i位的权为 ...
- 洛谷P3758/BZOJ4887 [TJOI2017] 可乐 [矩阵快速幂]
洛谷传送门,BZOJ传送门 可乐 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 299 Solved: 207 Description 加里敦星球的人 ...
- $Miller Rabin$总结
\(Miller Rabin\)总结: 这是一个很高效的判断质数的方法,可以在用\(O(logn)\) 的复杂度快速判断一个数是否是质数.它运用了费马小定理和二次探测定理这两个筛质数效率极高的方法. ...
- 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- hdu 1568 Fibonacci 快速幂
Fibonacci Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Proble ...
- BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...
随机推荐
- java创建泛型数组
java中创建泛型数组并不是不可能,创建泛型数组通过反射,给构造函数传递两个参数,一个类型标记,一个数组大小.' 简单Demo如下: import java.lang.reflect.Array; / ...
- 基于redis的延迟消息队列设计
需求背景 用户下订单成功之后隔20分钟给用户发送上门服务通知短信 订单完成一个小时之后通知用户对上门服务进行评价 业务执行失败之后隔10分钟重试一次 类似的场景比较多 简单的处理方式就是使用定时任务 ...
- 自己动手写java 字节流输入输出流
数据流是一串连续不断的数据的集合,就象水管里的水流,在水管的一端一点一点地供水,而在水管的另一端看到的是一股连续不断的水流. "流是磁盘或其它外围设备中存储的数据的源点或终点." ...
- JS判断当前使用设备是pc端还是web端(转MirageFireFox)
js判断当前设备 最近用bootstrap做自适应,发现仍然很难很好的兼容web端和PC端的现实. 仔细观察百度,淘宝,京东等大型网站,发现这些网站都有对应不同客户端的子站. 站点 PC端url we ...
- 编译安装LAMP并实现wordpress
author:JevonWei 版权声明:原创作品 软件环境 centos7.3 apr-1.5.2.tar.bz2 apr-util-1.5.4.tar.bz2 httpd-2.4.27.tar.b ...
- Java设计模式之-------->"代理模式"
01.什么是代理模式? 解析:代理(Proxy):代理模式的主要作用是为其他对象提供一种代理以控制对这个对象的访问.在某些情况下,一个对象不想或者不能直接引用另一个对象, 而代理对象可以在客户端和目标 ...
- 必应词典--英语学习APP案例分析
一.调研,评测 1.个人上手体验 这还是第一次听说必应词典,只能说知名度有待提高啊.首先,下载打开必应词典的第一感觉就是不够美观,个人感觉不论图标还是界面的美感都不足,既繁琐有简洁,给人的最直观感受就 ...
- 【Alpha阶段】第一次Scrum Meeting!
每日任务 1.本次会议为第一次 Meeting会议: 2.本次会议在中午12:30,在第五社区5号楼楼下,召开本次会议为30分钟讨论接下来的任务: 一.今日站立式会议照片 二.每个人的工作 (有wor ...
- 201521123016《Java设计与程序》第6周学习总结
1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图,对面向对象思想进行一个总结. 2. 书面作业 1.clone方法 1.1 Object对 ...
- 201521123049 《JAVA程序设计》 第4周学习总结
1. 本周学习总结 1.1 尝试使用思维导图总结有关继承的知识点. 1.2 使用常规方法总结其他上课内容. ###1.类型转换(cast):是将两种不同类型的变量进行转换,但不能随意强制转换,随意强制 ...